Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnolog2flm1 Structured version   Visualization version   GIF version

Theorem nnolog2flm1 42182
Description: The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nnolog2flm1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))

Proof of Theorem nnolog2flm1
StepHypRef Expression
1 eluz2nn 11602 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnpw2blenfzo2 42174 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
31, 2syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
41adantl 481 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
5 nneo 11337 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
65bicomd 212 . . . . . . . . 9 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
74, 6syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
8 notnotb 303 . . . . . . . 8 ((𝑁 / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ)
97, 8syl6bb 275 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ))
109con4bid 306 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ (𝑁 / 2) ∈ ℕ))
11 simpl 472 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 = (2↑((#b𝑁) − 1)))
1211oveq1d 6564 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) = ((2↑((#b𝑁) − 1)) / 2))
13 blennnelnn 42168 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
1413nnnn0d 11228 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ0)
151, 14syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ0)
16 2m1e1 11012 . . . . . . . . . . . . . 14 (2 − 1) = 1
17 2cn 10968 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
18 2ne0 10990 . . . . . . . . . . . . . . . . 17 2 ≠ 0
19 1ne2 11117 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
2019necomi 2836 . . . . . . . . . . . . . . . . 17 2 ≠ 1
21 logbid1 24306 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
2217, 18, 20, 21mp3an 1416 . . . . . . . . . . . . . . . 16 (2 logb 2) = 1
23 eluzle 11576 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
24 2z 11286 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
25 uzid 11578 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ (ℤ‘2))
27 2rp 11713 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
291nnrpd 11746 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ+)
30 logbleb 24321 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3126, 28, 29, 30syl3anc 1318 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3223, 31mpbid 221 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 2) ≤ (2 logb 𝑁))
3322, 32syl5eqbrr 4619 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 ≤ (2 logb 𝑁))
3420a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
35 relogbcl 24311 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
3628, 29, 34, 35syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 𝑁) ∈ ℝ)
37 1zzd 11285 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
38 flge 12468 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
3936, 37, 38syl2anc 691 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
4033, 39mpbid 221 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ≤ (⌊‘(2 logb 𝑁)))
4116, 40syl5eqbr 4618 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2 − 1) ≤ (⌊‘(2 logb 𝑁)))
42 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
44 1red 9934 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
4536flcld 12461 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
4645zred 11358 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℝ)
4743, 44, 46lesubaddd 10503 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2 − 1) ≤ (⌊‘(2 logb 𝑁)) ↔ 2 ≤ ((⌊‘(2 logb 𝑁)) + 1)))
4841, 47mpbid 221 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 2 ≤ ((⌊‘(2 logb 𝑁)) + 1))
49 blennn 42167 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
501, 49syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5148, 50breqtrrd 4611 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ (#b𝑁))
52 nn0ge2m1nn 11237 . . . . . . . . . . 11 (((#b𝑁) ∈ ℕ0 ∧ 2 ≤ (#b𝑁)) → ((#b𝑁) − 1) ∈ ℕ)
5315, 51, 52syl2anc 691 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ)
5453adantl 481 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((#b𝑁) − 1) ∈ ℕ)
55 nnpw2even 42117 . . . . . . . . 9 (((#b𝑁) − 1) ∈ ℕ → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5654, 55syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5712, 56eqeltrd 2688 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) ∈ ℕ)
5857pm2.24d 146 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ (𝑁 / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
5910, 58sylbid 229 . . . . 5 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
6059ex 449 . . . 4 (𝑁 = (2↑((#b𝑁) − 1)) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
611, 13syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ)
62 nnm1nn0 11211 . . . . . . . . 9 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6361, 62syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ0)
6463ad2antlr 759 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
651ad2antlr 759 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ℕ)
66 nnpw2blenfzo 42173 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6765, 66syl 17 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6861nncnd 10913 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℂ)
6968ad2antlr 759 . . . . . . . . . . 11 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℂ)
70 npcan1 10334 . . . . . . . . . . 11 ((#b𝑁) ∈ ℂ → (((#b𝑁) − 1) + 1) = (#b𝑁))
7169, 70syl 17 . . . . . . . . . 10 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (((#b𝑁) − 1) + 1) = (#b𝑁))
7271oveq2d 6565 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
7372oveq2d 6565 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) = ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
7467, 73eleqtrrd 2691 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
75 fllog2 42160 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7664, 74, 75syl2anc 691 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7761ad2antlr 759 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℕ)
7877, 62syl 17 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
79 elfzo2 12342 . . . . . . . . . . . 12 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
80 eluz2 11569 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ↔ (((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁))
81803anbi1i 1246 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
8279, 81bitri 263 . . . . . . . . . . 11 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
83 2nn 11062 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
8584, 63jca 553 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
8685adantl 481 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
87 nnexpcl 12735 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8988nnzd 11357 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℤ)
90 peano2zm 11297 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
91903ad2ant2 1076 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 − 1) ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ℤ)
9484, 63nnexpcld 12892 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℕ)
9594nnred 10912 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℝ)
961nnred 10912 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
97 leaddsub 10383 . . . . . . . . . . . . . . . . . . . 20 (((2↑((#b𝑁) − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9895, 44, 96, 97syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9998biimpcd 238 . . . . . . . . . . . . . . . . . 18 (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
100993ad2ant3 1077 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
101100adantr 480 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
102101imp 444 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1))
103 eluz2 11569 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
10489, 93, 102, 103syl3anbrc 1239 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))))
10570eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 ((#b𝑁) ∈ ℂ → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10668, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10715, 106mpbird 246 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) ∈ ℕ0)
10884, 107jca 553 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
109108adantl 481 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
110 nnexpcl 12735 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
112111nnzd 11357 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ)
113 nnre 10904 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
11442a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 2 ∈ ℝ)
115114, 14reexpcld 12887 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (2↑(#b𝑁)) ∈ ℝ)
116113, 115jca 553 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
1171, 116syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
118 ltle 10005 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ) → (𝑁 < (2↑(#b𝑁)) → 𝑁 ≤ (2↑(#b𝑁))))
119117, 118syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (𝑁 < (2↑(#b𝑁)) → 𝑁 ≤ (2↑(#b𝑁))))
120119com12 32 . . . . . . . . . . . . . . . . . 18 (𝑁 < (2↑(#b𝑁)) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
121120adantl 481 . . . . . . . . . . . . . . . . 17 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
122121imp 444 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≤ (2↑(#b𝑁)))
123 simpll2 1094 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
12484, 15nnexpcld 12892 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℕ)
125124nnzd 11357 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℤ)
126125adantl 481 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(#b𝑁)) ∈ ℤ)
127 zlem1lt 11306 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (2↑(#b𝑁)) ∈ ℤ) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
128123, 126, 127syl2anc 691 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
129122, 128mpbid 221 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(#b𝑁)))
13068, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) = (#b𝑁))
131130oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
132131adantl 481 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
133129, 132breqtrrd 4611 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))
134104, 112, 1333jca 1235 . . . . . . . . . . . . 13 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
135134ex 449 . . . . . . . . . . . 12 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
1361353adant2 1073 . . . . . . . . . . 11 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
13782, 136sylbi 206 . . . . . . . . . 10 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
138137imp 444 . . . . . . . . 9 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
139 elfzo2 12342 . . . . . . . . 9 ((𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) ↔ ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
140138, 139sylibr 223 . . . . . . . 8 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
141140adantr 480 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
142 fllog2 42160 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14378, 141, 142syl2anc 691 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14476, 143eqtr4d 2647 . . . . 5 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
145144exp31 628 . . . 4 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
14660, 145jaoi 393 . . 3 ((𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
1473, 146mpcom 37 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
148147imp 444 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ..^cfzo 12334  cfl 12453  cexp 12722   logb clogb 24302  #bcblen 42161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303  df-blen 42162
This theorem is referenced by:  blennngt2o2  42184
  Copyright terms: Public domain W3C validator