Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 120. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 138 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5 163 asymref2 5432 xpexr 6999 bropopvvv 7142 bropfvvvv 7144 reldmtpos 7247 zeo 11339 rpneg 11739 xrlttri 11848 difreicc 12175 nn0o1gt2 14935 cshwshashlem1 15640 gsumbagdiag 19197 psrass1lem 19198 gsumcom3fi 20025 cfinufil 21542 sizeusglecusg 26014 clwlkisclwwlklem2a4 26312 2wlkonot3v 26402 2spthonot3v 26403 frgrancvvdeqlemB 26565 chirredi 28637 gsummpt2co 29111 truae 29633 bj-sngltag 32164 itg2addnclem 32631 itg2addnclem3 32633 cdleme32e 34751 ntrneiiso 37409 tz6.12-afv 39902 odz2prm2pw 40013 lighneallem3 40062 lighneallem4b 40064 sizusglecusg 40679 clwlkclwwlklem2a4 41206 frgrncvvdeqlemB 41477 lindslinindsimp2lem5 42045 nnolog2flm1 42182 |
Copyright terms: Public domain | W3C validator |