Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwlkclwwlklem2a4 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a4 41206
Description: Lemma 4 for clwlkclwwlklem2a 41207. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ if(𝑥 < ((#‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2a4 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1))) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑥,𝐼
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2a4
StepHypRef Expression
1 fveq2 6103 . . . . . . . . . 10 (𝐼 = ((#‘𝑃) − 2) → (𝐹𝐼) = (𝐹‘((#‘𝑃) − 2)))
2 lencl 13179 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℕ0)
3 clwlkclwwlklem2.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ if(𝑥 < ((#‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
43clwlkisclwwlklem2fv2 26311 . . . . . . . . . . 11 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (𝐹‘((#‘𝑃) − 2)) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)}))
52, 4sylan 487 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝐹‘((#‘𝑃) − 2)) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)}))
61, 5sylan9eqr 2666 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ 𝐼 = ((#‘𝑃) − 2)) → (𝐹𝐼) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)}))
76ex 449 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝐼 = ((#‘𝑃) − 2) → (𝐹𝐼) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})))
873adant1 1072 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝐼 = ((#‘𝑃) − 2) → (𝐹𝐼) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})))
98ad2antrr 758 . . . . . 6 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐼 = ((#‘𝑃) − 2) → (𝐹𝐼) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})))
109impcom 445 . . . . 5 ((𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐹𝐼) = (𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)}))
1110fveq2d 6107 . . . 4 ((𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = (𝐸‘(𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})))
12 f1f1orn 6061 . . . . . . 7 (𝐸:dom 𝐸1-1𝑅𝐸:dom 𝐸1-1-onto→ran 𝐸)
13123ad2ant1 1075 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1413ad2antrr 758 . . . . 5 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
15 lsw 13204 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → ( lastS ‘𝑃) = (𝑃‘((#‘𝑃) − 1)))
1615eqeq1d 2612 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → (( lastS ‘𝑃) = (𝑃‘0) ↔ (𝑃‘((#‘𝑃) − 1)) = (𝑃‘0)))
17 nn0cn 11179 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℂ)
18 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) ∈ ℂ → (#‘𝑃) ∈ ℂ)
19 2cnd 10970 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) ∈ ℂ → 2 ∈ ℂ)
20 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) ∈ ℂ → 1 ∈ ℂ)
2118, 19, 20subsubd 10299 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑃) ∈ ℂ → ((#‘𝑃) − (2 − 1)) = (((#‘𝑃) − 2) + 1))
22 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 − 1) = 1
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) ∈ ℂ → (2 − 1) = 1)
2423oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑃) ∈ ℂ → ((#‘𝑃) − (2 − 1)) = ((#‘𝑃) − 1))
2521, 24eqtr3d 2646 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑃) ∈ ℂ → (((#‘𝑃) − 2) + 1) = ((#‘𝑃) − 1))
262, 17, 253syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → (((#‘𝑃) − 2) + 1) = ((#‘𝑃) − 1))
2726adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((#‘𝑃) − 1)) = (𝑃‘0)) → (((#‘𝑃) − 2) + 1) = ((#‘𝑃) − 1))
2827fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((#‘𝑃) − 1)) = (𝑃‘0)) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘((#‘𝑃) − 1)))
29 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘((#‘𝑃) − 1)) → ((𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0) ↔ (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘((#‘𝑃) − 1))))
3029eqcoms 2618 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘((#‘𝑃) − 1)) = (𝑃‘0) → ((𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0) ↔ (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘((#‘𝑃) − 1))))
3130adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((#‘𝑃) − 1)) = (𝑃‘0)) → ((𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0) ↔ (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘((#‘𝑃) − 1))))
3228, 31mpbird 246 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((#‘𝑃) − 1)) = (𝑃‘0)) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0))
3332ex 449 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((𝑃‘((#‘𝑃) − 1)) = (𝑃‘0) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0)))
3416, 33sylbid 229 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → (( lastS ‘𝑃) = (𝑃‘0) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0)))
35343ad2ant2 1076 . . . . . . . . . . . . . . 15 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (( lastS ‘𝑃) = (𝑃‘0) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0)))
3635com12 32 . . . . . . . . . . . . . 14 (( lastS ‘𝑃) = (𝑃‘0) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0)))
3736adantr 480 . . . . . . . . . . . . 13 ((( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1))) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0)))
3837impcom 445 . . . . . . . . . . . 12 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0))
3938adantr 480 . . . . . . . . . . 11 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ 𝐼 = ((#‘𝑃) − 2)) → (𝑃‘(((#‘𝑃) − 2) + 1)) = (𝑃‘0))
4039preq2d 4219 . . . . . . . . . 10 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ 𝐼 = ((#‘𝑃) − 2)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})
41 fveq2 6103 . . . . . . . . . . . . 13 (𝐼 = ((#‘𝑃) − 2) → (𝑃𝐼) = (𝑃‘((#‘𝑃) − 2)))
42 oveq1 6556 . . . . . . . . . . . . . 14 (𝐼 = ((#‘𝑃) − 2) → (𝐼 + 1) = (((#‘𝑃) − 2) + 1))
4342fveq2d 6107 . . . . . . . . . . . . 13 (𝐼 = ((#‘𝑃) − 2) → (𝑃‘(𝐼 + 1)) = (𝑃‘(((#‘𝑃) − 2) + 1)))
4441, 43preq12d 4220 . . . . . . . . . . . 12 (𝐼 = ((#‘𝑃) − 2) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))})
4544eqeq1d 2612 . . . . . . . . . . 11 (𝐼 = ((#‘𝑃) − 2) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ↔ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)}))
4645adantl 481 . . . . . . . . . 10 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ 𝐼 = ((#‘𝑃) − 2)) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ↔ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)}))
4740, 46mpbird 246 . . . . . . . . 9 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ 𝐼 = ((#‘𝑃) − 2)) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})
4847eleq1d 2672 . . . . . . . 8 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ 𝐼 = ((#‘𝑃) − 2)) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
4948biimpd 218 . . . . . . 7 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ 𝐼 = ((#‘𝑃) − 2)) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5049impancom 455 . . . . . 6 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5150impcom 445 . . . . 5 ((𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)
52 f1ocnvfv2 6433 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})) = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})
5314, 51, 52syl2an2 871 . . . 4 ((𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐸‘{(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})) = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)})
54 eqcom 2617 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘((#‘𝑃) − 1)) = (𝑃‘0) ↔ (𝑃‘0) = (𝑃‘((#‘𝑃) − 1)))
5554biimpi 205 . . . . . . . . . . . . . . . . . 18 ((𝑃‘((#‘𝑃) − 1)) = (𝑃‘0) → (𝑃‘0) = (𝑃‘((#‘𝑃) − 1)))
56 1e2m1 11013 . . . . . . . . . . . . . . . . . . . . . 22 1 = (2 − 1)
5756a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5857oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − 1) = ((#‘𝑃) − (2 − 1)))
592, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℂ)
60 2cnd 10970 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
61 1cnd 9935 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
6259, 60, 61subsubd 10299 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − (2 − 1)) = (((#‘𝑃) − 2) + 1))
6358, 62eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → ((#‘𝑃) − 1) = (((#‘𝑃) − 2) + 1))
6463fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → (𝑃‘((#‘𝑃) − 1)) = (𝑃‘(((#‘𝑃) − 2) + 1)))
6555, 64sylan9eqr 2666 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((#‘𝑃) − 1)) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1)))
6665ex 449 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → ((𝑃‘((#‘𝑃) − 1)) = (𝑃‘0) → (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1))))
6716, 66sylbid 229 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → (( lastS ‘𝑃) = (𝑃‘0) → (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1))))
6867imp 444 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((#‘𝑃) − 2) + 1)))
6968preq2d 4219 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ ( lastS ‘𝑃) = (𝑃‘0)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))})
7069adantr 480 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ ( lastS ‘𝑃) = (𝑃‘0)) ∧ 𝐼 = ((#‘𝑃) − 2)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))})
7144adantl 481 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ ( lastS ‘𝑃) = (𝑃‘0)) ∧ 𝐼 = ((#‘𝑃) − 2)) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((#‘𝑃) − 2)), (𝑃‘(((#‘𝑃) − 2) + 1))})
7270, 71eqtr4d 2647 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ ( lastS ‘𝑃) = (𝑃‘0)) ∧ 𝐼 = ((#‘𝑃) − 2)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
7372exp31 628 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (( lastS ‘𝑃) = (𝑃‘0) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
74733ad2ant2 1076 . . . . . . . . 9 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (( lastS ‘𝑃) = (𝑃‘0) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
7574com12 32 . . . . . . . 8 (( lastS ‘𝑃) = (𝑃‘0) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
7675adantr 480 . . . . . . 7 ((( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1))) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
7776impcom 445 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
7877adantr 480 . . . . 5 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐼 = ((#‘𝑃) − 2) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
7978impcom 445 . . . 4 ((𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
8011, 53, 793eqtrd 2648 . . 3 ((𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
81 simpll 786 . . . . . . . . . . . . . . . . 17 ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → (#‘𝑃) ∈ ℕ0)
82 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑃) = 2 → ((#‘𝑃) − 1) = (2 − 1))
8382, 22syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) = 2 → ((#‘𝑃) − 1) = 1)
8483oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑃) = 2 → (0..^((#‘𝑃) − 1)) = (0..^1))
8584eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑃) = 2 → (𝐼 ∈ (0..^((#‘𝑃) − 1)) ↔ 𝐼 ∈ (0..^1)))
86 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑃) = 2 → ((#‘𝑃) − 2) = (2 − 2))
87 2cn 10968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℂ
8887subidi 10231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 − 2) = 0
8986, 88syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) = 2 → ((#‘𝑃) − 2) = 0)
9089eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑃) = 2 → (𝐼 = ((#‘𝑃) − 2) ↔ 𝐼 = 0))
9190notbid 307 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑃) = 2 → (¬ 𝐼 = ((#‘𝑃) − 2) ↔ ¬ 𝐼 = 0))
9285, 91anbi12d 743 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑃) = 2 → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ↔ (𝐼 ∈ (0..^1) ∧ ¬ 𝐼 = 0)))
93 elsni 4142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ {0} → 𝐼 = 0)
9493pm2.24d 146 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ {0} → (¬ 𝐼 = 0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
95 fzo01 12417 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^1) = {0}
9694, 95eleq2s 2706 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (0..^1) → (¬ 𝐼 = 0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
9796imp 444 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (0..^1) ∧ ¬ 𝐼 = 0) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))
9892, 97syl6bi 242 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑃) = 2 → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
9998adantld 482 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑃) = 2 → ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
100 df-ne 2782 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑃) ≠ 2 ↔ ¬ (#‘𝑃) = 2)
101 2re 10967 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 2 ∈ ℝ)
103 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℝ)
105 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → 2 ≤ (#‘𝑃))
106102, 104, 105leltned 10069 . . . . . . . . . . . . . . . . . . . . . . . 24 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (2 < (#‘𝑃) ↔ (#‘𝑃) ≠ 2))
107 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ (0..^((#‘𝑃) − 1)) ↔ (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 1)))
108 simp-4l 802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ∧ 2 < (#‘𝑃)) ∧ 𝐼 < ((#‘𝑃) − 1)) → 𝐼 ∈ ℕ0)
109 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℤ)
110 2z 11286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 ∈ ℤ
111110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
112109, 111zsubcld 11363 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) ∈ ℤ)
113112adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((#‘𝑃) ∈ ℕ0 ∧ 2 < (#‘𝑃)) → ((#‘𝑃) − 2) ∈ ℤ)
114101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
115114, 103posdifd 10493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((#‘𝑃) ∈ ℕ0 → (2 < (#‘𝑃) ↔ 0 < ((#‘𝑃) − 2)))
116115biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((#‘𝑃) ∈ ℕ0 ∧ 2 < (#‘𝑃)) → 0 < ((#‘𝑃) − 2))
117 elnnz 11264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((#‘𝑃) − 2) ∈ ℕ ↔ (((#‘𝑃) − 2) ∈ ℤ ∧ 0 < ((#‘𝑃) − 2)))
118113, 116, 117sylanbrc 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((#‘𝑃) ∈ ℕ0 ∧ 2 < (#‘𝑃)) → ((#‘𝑃) − 2) ∈ ℕ)
119118ad5ant24 1297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ∧ 2 < (#‘𝑃)) ∧ 𝐼 < ((#‘𝑃) − 1)) → ((#‘𝑃) − 2) ∈ ℕ)
120 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
121 peano2zm 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((#‘𝑃) ∈ ℤ → ((#‘𝑃) − 1) ∈ ℤ)
122109, 121syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 1) ∈ ℤ)
123 zltlem1 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐼 ∈ ℤ ∧ ((#‘𝑃) − 1) ∈ ℤ) → (𝐼 < ((#‘𝑃) − 1) ↔ 𝐼 ≤ (((#‘𝑃) − 1) − 1)))
124120, 122, 123syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝐼 < ((#‘𝑃) − 1) ↔ 𝐼 ≤ (((#‘𝑃) − 1) − 1)))
12517adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (#‘𝑃) ∈ ℂ)
126 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → 1 ∈ ℂ)
127125, 126, 126subsub4d 10302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (((#‘𝑃) − 1) − 1) = ((#‘𝑃) − (1 + 1)))
128 1p1e2 11011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (1 + 1) = 2
129128a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (1 + 1) = 2)
130129oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → ((#‘𝑃) − (1 + 1)) = ((#‘𝑃) − 2))
131127, 130eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (((#‘𝑃) − 1) − 1) = ((#‘𝑃) − 2))
132131breq2d 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝐼 ≤ (((#‘𝑃) − 1) − 1) ↔ 𝐼 ≤ ((#‘𝑃) − 2)))
133124, 132bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝐼 < ((#‘𝑃) − 1) ↔ 𝐼 ≤ ((#‘𝑃) − 2)))
134 necom 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((#‘𝑃) − 2) ≠ 𝐼𝐼 ≠ ((#‘𝑃) − 2))
135 df-ne 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐼 ≠ ((#‘𝑃) − 2) ↔ ¬ 𝐼 = ((#‘𝑃) − 2))
136134, 135bitr2i 264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝐼 = ((#‘𝑃) − 2) ↔ ((#‘𝑃) − 2) ≠ 𝐼)
137 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
138137ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → 𝐼 ∈ ℝ)
139103, 114resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) ∈ ℝ)
140139ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → ((#‘𝑃) − 2) ∈ ℝ)
141 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → 𝐼 ≤ ((#‘𝑃) − 2))
142 leltne 10006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝐼 ∈ ℝ ∧ ((#‘𝑃) − 2) ∈ ℝ ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → (𝐼 < ((#‘𝑃) − 2) ↔ ((#‘𝑃) − 2) ≠ 𝐼))
143142bicomd 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℝ ∧ ((#‘𝑃) − 2) ∈ ℝ ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → (((#‘𝑃) − 2) ≠ 𝐼𝐼 < ((#‘𝑃) − 2)))
144138, 140, 141, 143syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → (((#‘𝑃) − 2) ≠ 𝐼𝐼 < ((#‘𝑃) − 2)))
145144biimpd 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → (((#‘𝑃) − 2) ≠ 𝐼𝐼 < ((#‘𝑃) − 2)))
146136, 145syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((#‘𝑃) − 2)) → (¬ 𝐼 = ((#‘𝑃) − 2) → 𝐼 < ((#‘𝑃) − 2)))
147146ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝐼 ≤ ((#‘𝑃) − 2) → (¬ 𝐼 = ((#‘𝑃) − 2) → 𝐼 < ((#‘𝑃) − 2))))
148133, 147sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝐼 < ((#‘𝑃) − 1) → (¬ 𝐼 = ((#‘𝑃) − 2) → 𝐼 < ((#‘𝑃) − 2))))
149148com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (¬ 𝐼 = ((#‘𝑃) − 2) → (𝐼 < ((#‘𝑃) − 1) → 𝐼 < ((#‘𝑃) − 2))))
150149imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (𝐼 < ((#‘𝑃) − 1) → 𝐼 < ((#‘𝑃) − 2)))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ∧ 2 < (#‘𝑃)) → (𝐼 < ((#‘𝑃) − 1) → 𝐼 < ((#‘𝑃) − 2)))
152151imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ∧ 2 < (#‘𝑃)) ∧ 𝐼 < ((#‘𝑃) − 1)) → 𝐼 < ((#‘𝑃) − 2))
153108, 119, 1523jca 1235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ∧ 2 < (#‘𝑃)) ∧ 𝐼 < ((#‘𝑃) − 1)) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))
154153ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐼 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) ∧ 2 < (#‘𝑃)) → (𝐼 < ((#‘𝑃) − 1) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
155154exp41 636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐼 ∈ ℕ0 → ((#‘𝑃) ∈ ℕ0 → (¬ 𝐼 = ((#‘𝑃) − 2) → (2 < (#‘𝑃) → (𝐼 < ((#‘𝑃) − 1) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))))
156155com25 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐼 ∈ ℕ0 → (𝐼 < ((#‘𝑃) − 1) → (¬ 𝐼 = ((#‘𝑃) − 2) → (2 < (#‘𝑃) → ((#‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))))
157156imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐼 ∈ ℕ0𝐼 < ((#‘𝑃) − 1)) → (¬ 𝐼 = ((#‘𝑃) − 2) → (2 < (#‘𝑃) → ((#‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))))
1581573adant2 1073 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 1)) → (¬ 𝐼 = ((#‘𝑃) − 2) → (2 < (#‘𝑃) → ((#‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))))
159107, 158sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝐼 = ((#‘𝑃) − 2) → (2 < (#‘𝑃) → ((#‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))))
160159imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (2 < (#‘𝑃) → ((#‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))
161160com13 86 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑃) ∈ ℕ0 → (2 < (#‘𝑃) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))
162161adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (2 < (#‘𝑃) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))
163106, 162sylbird 249 . . . . . . . . . . . . . . . . . . . . . . 23 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → ((#‘𝑃) ≠ 2 → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))
164100, 163syl5bir 232 . . . . . . . . . . . . . . . . . . . . . 22 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → (¬ (#‘𝑃) = 2 → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))
165164com23 84 . . . . . . . . . . . . . . . . . . . . 21 (((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → (¬ (#‘𝑃) = 2 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))))
166165imp 444 . . . . . . . . . . . . . . . . . . . 20 ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → (¬ (#‘𝑃) = 2 → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
167166com12 32 . . . . . . . . . . . . . . . . . . 19 (¬ (#‘𝑃) = 2 → ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2))))
16899, 167pm2.61i 175 . . . . . . . . . . . . . . . . . 18 ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))
169 elfzo0 12376 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (0..^((#‘𝑃) − 2)) ↔ (𝐼 ∈ ℕ0 ∧ ((#‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((#‘𝑃) − 2)))
170168, 169sylibr 223 . . . . . . . . . . . . . . . . 17 ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → 𝐼 ∈ (0..^((#‘𝑃) − 2)))
17181, 170jca 553 . . . . . . . . . . . . . . . 16 ((((#‘𝑃) ∈ ℕ0 ∧ 2 ≤ (#‘𝑃)) ∧ (𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2))) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))
172171exp31 628 . . . . . . . . . . . . . . 15 ((#‘𝑃) ∈ ℕ0 → (2 ≤ (#‘𝑃) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))))
1732, 172syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (2 ≤ (#‘𝑃) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))))
174173imp 444 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2)))))
1751743adant1 1072 . . . . . . . . . . . 12 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((𝐼 ∈ (0..^((#‘𝑃) − 1)) ∧ ¬ 𝐼 = ((#‘𝑃) − 2)) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2)))))
176175expd 451 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝐼 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝐼 = ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))))
177176com12 32 . . . . . . . . . 10 (𝐼 ∈ (0..^((#‘𝑃) − 1)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (¬ 𝐼 = ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))))
178177adantl 481 . . . . . . . . 9 ((( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1))) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (¬ 𝐼 = ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))))
179178impcom 445 . . . . . . . 8 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) → (¬ 𝐼 = ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2)))))
180179adantr 480 . . . . . . 7 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (¬ 𝐼 = ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2)))))
181180impcom 445 . . . . . 6 ((¬ 𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → ((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))))
1823clwlkisclwwlklem2fv1 26310 . . . . . 6 (((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
183181, 182syl 17 . . . . 5 ((¬ 𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
184183fveq2d 6107 . . . 4 ((¬ 𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = (𝐸‘(𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
185 simprr 792 . . . . 5 ((¬ 𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)
186 f1ocnvfv2 6433 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))})) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
18714, 185, 186syl2an2 871 . . . 4 ((¬ 𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))})) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
188184, 187eqtrd 2644 . . 3 ((¬ 𝐼 = ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
18980, 188pm2.61ian 827 . 2 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
190189exp31 628 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((#‘𝑃) − 1))) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  {csn 4125  {cpr 4127   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  ..^cfzo 12334  #chash 12979  Word cword 13146   lastS clsw 13147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155
This theorem is referenced by:  clwlkclwwlklem2a  41207
  Copyright terms: Public domain W3C validator