MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtpos Structured version   Visualization version   GIF version

Theorem reldmtpos 7247
Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4718 . . . . 5 ∅ ∈ V
21eldm 5243 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 vex 3176 . . . . . . 7 𝑦 ∈ V
4 brtpos0 7246 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
53, 4ax-mp 5 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
6 0nelxp 5067 . . . . . . . 8 ¬ ∅ ∈ (V × V)
7 df-rel 5045 . . . . . . . . 9 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
8 ssel 3562 . . . . . . . . 9 (dom tpos 𝐹 ⊆ (V × V) → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
97, 8sylbi 206 . . . . . . . 8 (Rel dom tpos 𝐹 → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
106, 9mtoi 189 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
111, 3breldm 5251 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
1210, 11nsyl3 132 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
135, 12sylbir 224 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
1413exlimiv 1845 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
152, 14sylbi 206 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1615con2i 133 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
17 vex 3176 . . . . . 6 𝑥 ∈ V
1817eldm 5243 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
19 relcnv 5422 . . . . . . . . . . 11 Rel dom 𝐹
20 df-rel 5045 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
2119, 20mpbi 219 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
2221sseli 3564 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
2322a1i 11 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
24 elsni 4142 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2524breq1d 4593 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
261, 3breldm 5251 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2726pm2.24d 146 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
285, 27sylbi 206 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2925, 28syl6bi 242 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
3029com3l 87 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
3130impcom 445 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
32 brtpos2 7245 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
333, 32ax-mp 5 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3433simplbi 475 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
35 elun 3715 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3634, 35sylib 207 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3736adantl 481 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3823, 31, 37mpjaod 395 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3938ex 449 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4039exlimdv 1848 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4118, 40syl5bi 231 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
4241ssrdv 3574 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
4342, 7sylibr 223 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4416, 43impbii 198 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wex 1695  wcel 1977  Vcvv 3173  cun 3538  wss 3540  c0 3874  {csn 4125   cuni 4372   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  Rel wrel 5043  tpos ctpos 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-tpos 7239
This theorem is referenced by:  dmtpos  7251
  Copyright terms: Public domain W3C validator