MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtpos Structured version   Unicode version

Theorem reldmtpos 6960
Description: Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )

Proof of Theorem reldmtpos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4577 . . . . 5  |-  (/)  e.  _V
21eldm 5198 . . . 4  |-  ( (/)  e.  dom  F  <->  E. y (/) F y )
3 vex 3116 . . . . . . 7  |-  y  e. 
_V
4 brtpos0 6959 . . . . . . 7  |-  ( y  e.  _V  ->  ( (/)tpos  F y  <->  (/) F y ) )
53, 4ax-mp 5 . . . . . 6  |-  ( (/)tpos  F y  <->  (/) F y )
6 0nelxp 5026 . . . . . . . 8  |-  -.  (/)  e.  ( _V  X.  _V )
7 df-rel 5006 . . . . . . . . 9  |-  ( Rel 
dom tpos  F  <->  dom tpos  F  C_  ( _V 
X.  _V ) )
8 ssel 3498 . . . . . . . . 9  |-  ( dom tpos  F  C_  ( _V  X.  _V )  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V  X.  _V )
) )
97, 8sylbi 195 . . . . . . . 8  |-  ( Rel 
dom tpos  F  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V 
X.  _V ) ) )
106, 9mtoi 178 . . . . . . 7  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom tpos  F )
111, 3breldm 5205 . . . . . . 7  |-  ( (/)tpos  F y  ->  (/)  e.  dom tpos  F )
1210, 11nsyl3 119 . . . . . 6  |-  ( (/)tpos  F y  ->  -.  Rel  dom tpos  F )
135, 12sylbir 213 . . . . 5  |-  ( (/) F y  ->  -.  Rel  dom tpos  F )
1413exlimiv 1698 . . . 4  |-  ( E. y (/) F y  ->  -.  Rel  dom tpos  F )
152, 14sylbi 195 . . 3  |-  ( (/)  e.  dom  F  ->  -.  Rel  dom tpos  F )
1615con2i 120 . 2  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom  F )
17 vex 3116 . . . . . 6  |-  x  e. 
_V
1817eldm 5198 . . . . 5  |-  ( x  e.  dom tpos  F  <->  E. y  xtpos  F y )
19 relcnv 5372 . . . . . . . . . . 11  |-  Rel  `' dom  F
20 df-rel 5006 . . . . . . . . . . 11  |-  ( Rel  `' dom  F  <->  `' dom  F 
C_  ( _V  X.  _V ) )
2119, 20mpbi 208 . . . . . . . . . 10  |-  `' dom  F 
C_  ( _V  X.  _V )
2221sseli 3500 . . . . . . . . 9  |-  ( x  e.  `' dom  F  ->  x  e.  ( _V 
X.  _V ) )
2322a1i 11 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  ->  x  e.  ( _V  X.  _V ) ) )
24 elsni 4052 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2524breq1d 4457 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  <->  (/)tpos  F y ) )
261, 3breldm 5205 . . . . . . . . . . . . 13  |-  ( (/) F y  ->  (/)  e.  dom  F )
2726pm2.24d 143 . . . . . . . . . . . 12  |-  ( (/) F y  ->  ( -.  (/)  e.  dom  F  ->  x  e.  ( _V 
X.  _V ) ) )
285, 27sylbi 195 . . . . . . . . . . 11  |-  ( (/)tpos  F y  ->  ( -.  (/) 
e.  dom  F  ->  x  e.  ( _V  X.  _V ) ) )
2925, 28syl6bi 228 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  -> 
( -.  (/)  e.  dom  F  ->  x  e.  ( _V  X.  _V )
) ) )
3029com3l 81 . . . . . . . . 9  |-  ( xtpos 
F y  ->  ( -.  (/)  e.  dom  F  ->  ( x  e.  { (/)
}  ->  x  e.  ( _V  X.  _V )
) ) )
3130impcom 430 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e. 
{ (/) }  ->  x  e.  ( _V  X.  _V ) ) )
32 brtpos2 6958 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
xtpos  F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) ) )
333, 32ax-mp 5 . . . . . . . . . . 11  |-  ( xtpos 
F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) )
3433simplbi 460 . . . . . . . . . 10  |-  ( xtpos 
F y  ->  x  e.  ( `' dom  F  u.  { (/) } ) )
35 elun 3645 . . . . . . . . . 10  |-  ( x  e.  ( `' dom  F  u.  { (/) } )  <-> 
( x  e.  `' dom  F  \/  x  e. 
{ (/) } ) )
3634, 35sylib 196 . . . . . . . . 9  |-  ( xtpos 
F y  ->  (
x  e.  `' dom  F  \/  x  e.  { (/)
} ) )
3736adantl 466 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  \/  x  e.  { (/) } ) )
3823, 31, 37mpjaod 381 . . . . . . 7  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  x  e.  ( _V  X.  _V )
)
3938ex 434 . . . . . 6  |-  ( -.  (/)  e.  dom  F  -> 
( xtpos  F y  ->  x  e.  ( _V  X.  _V )
) )
4039exlimdv 1700 . . . . 5  |-  ( -.  (/)  e.  dom  F  -> 
( E. y  xtpos 
F y  ->  x  e.  ( _V  X.  _V ) ) )
4118, 40syl5bi 217 . . . 4  |-  ( -.  (/)  e.  dom  F  -> 
( x  e.  dom tpos  F  ->  x  e.  ( _V  X.  _V )
) )
4241ssrdv 3510 . . 3  |-  ( -.  (/)  e.  dom  F  ->  dom tpos  F  C_  ( _V  X.  _V ) )
4342, 7sylibr 212 . 2  |-  ( -.  (/)  e.  dom  F  ->  Rel  dom tpos  F )
4416, 43impbii 188 1  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   E.wex 1596    e. wcel 1767   _Vcvv 3113    u. cun 3474    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   class class class wbr 4447    X. cxp 4997   `'ccnv 4998   dom cdm 4999   Rel wrel 5004  tpos ctpos 6951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594  df-tpos 6952
This theorem is referenced by:  dmtpos  6964
  Copyright terms: Public domain W3C validator