Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4b Structured version   Visualization version   GIF version

Theorem lighneallem4b 40064
Description: Lemma 2 for lighneallem4 40065. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4b ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem lighneallem4b
StepHypRef Expression
1 2z 11286 . . 3 2 ∈ ℤ
21a1i 11 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ∈ ℤ)
3 fzfid 12634 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (0...(𝑀 − 1)) ∈ Fin)
4 neg1z 11290 . . . . . . 7 -1 ∈ ℤ
5 elfznn0 12302 . . . . . . 7 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
6 zexpcl 12737 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
74, 5, 6sylancr 694 . . . . . 6 (𝑘 ∈ (0...(𝑀 − 1)) → (-1↑𝑘) ∈ ℤ)
87adantl 481 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
9 eluzge2nn0 11603 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ0)
1110adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝐴 ∈ ℕ0)
125adantl 481 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → 𝑘 ∈ ℕ0)
1311, 12nn0expcld 12893 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℕ0)
1413nn0zd 11356 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝐴𝑘) ∈ ℤ)
158, 14zmulcld 11364 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
163, 15fsumzcl 14313 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
17163adant3 1074 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ)
18 simp1 1054 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ (ℤ‘2))
19 3z 11287 . . . . 5 3 ∈ ℤ
2019a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ∈ ℤ)
21 eluzelz 11573 . . . . 5 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
22213ad2ant2 1076 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
23 eluz2 11569 . . . . . . 7 (𝑀 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀))
24 2re 10967 . . . . . . . . . . . 12 2 ∈ ℝ
2524a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 2 ∈ ℝ)
26 zre 11258 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2725, 26leloed 10059 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ≤ 𝑀 ↔ (2 < 𝑀 ∨ 2 = 𝑀)))
28 zltp1le 11304 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
291, 28mpan 702 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
3029biimpd 218 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (2 < 𝑀 → (2 + 1) ≤ 𝑀))
31 df-3 10957 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
3231breq1i 4590 . . . . . . . . . . . . . . 15 (3 ≤ 𝑀 ↔ (2 + 1) ≤ 𝑀)
3330, 32syl6ibr 241 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀))
3433a1i 11 . . . . . . . . . . . . 13 (¬ 2 ∥ 𝑀 → (𝑀 ∈ ℤ → (2 < 𝑀 → 3 ≤ 𝑀)))
3534com13 86 . . . . . . . . . . . 12 (2 < 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
36 z2even 14944 . . . . . . . . . . . . . . 15 2 ∥ 2
37 breq2 4587 . . . . . . . . . . . . . . 15 (2 = 𝑀 → (2 ∥ 2 ↔ 2 ∥ 𝑀))
3836, 37mpbii 222 . . . . . . . . . . . . . 14 (2 = 𝑀 → 2 ∥ 𝑀)
3938pm2.24d 146 . . . . . . . . . . . . 13 (2 = 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4039a1d 25 . . . . . . . . . . . 12 (2 = 𝑀 → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4135, 40jaoi 393 . . . . . . . . . . 11 ((2 < 𝑀 ∨ 2 = 𝑀) → (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4241com12 32 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((2 < 𝑀 ∨ 2 = 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4327, 42sylbid 229 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ≤ 𝑀 → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀)))
4443imp 444 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
45443adant1 1072 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4623, 45sylbi 206 . . . . . 6 (𝑀 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑀 → 3 ≤ 𝑀))
4746imp 444 . . . . 5 ((𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
48473adant1 1072 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 3 ≤ 𝑀)
49 eluz2 11569 . . . 4 (𝑀 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 3 ≤ 𝑀))
5020, 22, 48, 49syl3anbrc 1239 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ (ℤ‘3))
51 eluzelcn 11575 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
52513ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝐴 ∈ ℂ)
53 eluz2nn 11602 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
54533ad2ant2 1076 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
55 simp3 1056 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
5652, 54, 55oddpwp1fsum 14953 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
5756eqcomd 2616 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1))
58 eluzge2nn0 11603 . . . . . . . . . . 11 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
5958adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → 𝑀 ∈ ℕ0)
6010, 59nn0expcld 12893 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℕ0)
6160nn0cnd 11230 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → (𝐴𝑀) ∈ ℂ)
62 peano2cn 10087 . . . . . . . 8 ((𝐴𝑀) ∈ ℂ → ((𝐴𝑀) + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2)) → ((𝐴𝑀) + 1) ∈ ℂ)
64633adant3 1074 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴𝑀) + 1) ∈ ℂ)
6517zcnd 11359 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ)
66 eluz2nn 11602 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
6766peano2nnd 10914 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℕ)
6867nncnd 10913 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℂ)
6967nnne0d 10942 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≠ 0)
7068, 69jca 553 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
71703ad2ant1 1075 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0))
72 divmul 10567 . . . . . 6 ((((𝐴𝑀) + 1) ∈ ℂ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℂ ∧ ((𝐴 + 1) ∈ ℂ ∧ (𝐴 + 1) ≠ 0)) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7364, 65, 71, 72syl3anc 1318 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → ((((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ↔ ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))) = ((𝐴𝑀) + 1)))
7457, 73mpbird 246 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → (((𝐴𝑀) + 1) / (𝐴 + 1)) = Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7574eqcomd 2616 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1)))
76 lighneallem4a 40063 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
7718, 50, 75, 76syl3anc 1318 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)))
78 eluz2 11569 . 2 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ ℤ ∧ 2 ≤ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘))))
792, 17, 77, 78syl3anbrc 1239 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴𝑘)) ∈ (ℤ‘2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822
This theorem is referenced by:  lighneallem4  40065
  Copyright terms: Public domain W3C validator