MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref2 Structured version   Visualization version   GIF version

Theorem asymref2 5432
Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
asymref2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref2
StepHypRef Expression
1 asymref 5431 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
2 albiim 1806 . . 3 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
32ralbii 2963 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
4 r19.26 3046 . . 3 (∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
5 ancom 465 . . 3 ((∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
6 equcom 1932 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
76imbi1i 338 . . . . . . 7 ((𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
87albii 1737 . . . . . 6 (∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
9 breq2 4587 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
10 breq1 4586 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑅𝑥𝑥𝑅𝑥))
119, 10anbi12d 743 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥𝑥𝑅𝑥)))
12 anidm 674 . . . . . . . 8 ((𝑥𝑅𝑥𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥)
1311, 12syl6bb 275 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥𝑅𝑥))
1413equsalvw 1918 . . . . . 6 (∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥)
158, 14bitri 263 . . . . 5 (∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥)
1615ralbii 2963 . . . 4 (∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ∀𝑥 𝑅𝑥𝑅𝑥)
17 df-ral 2901 . . . . 5 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
18 df-br 4584 . . . . . . . . . . . . 13 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
19 vex 3176 . . . . . . . . . . . . . . 15 𝑥 ∈ V
20 vex 3176 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2119, 20opeluu 4866 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
2221simpld 474 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥 𝑅)
2318, 22sylbi 206 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑥 𝑅)
2423adantr 480 . . . . . . . . . . 11 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
2524pm2.24d 146 . . . . . . . . . 10 ((𝑥𝑅𝑦𝑦𝑅𝑥) → (¬ 𝑥 𝑅𝑥 = 𝑦))
2625com12 32 . . . . . . . . 9 𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
2726alrimiv 1842 . . . . . . . 8 𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
28 id 22 . . . . . . . 8 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
2927, 28ja 172 . . . . . . 7 ((𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
30 ax-1 6 . . . . . . 7 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
3129, 30impbii 198 . . . . . 6 ((𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3231albii 1737 . . . . 5 (∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3317, 32bitri 263 . . . 4 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3416, 33anbi12i 729 . . 3 ((∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
354, 5, 343bitri 285 . 2 (∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
361, 3, 353bitri 285 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  cin 3539  cop 4131   cuni 4372   class class class wbr 4583   I cid 4948  ccnv 5037  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-res 5050
This theorem is referenced by:  pslem  17029  psss  17037
  Copyright terms: Public domain W3C validator