Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Visualization version   GIF version

Theorem irrapxlem4 36407
Description: Lemma for irrapx1 36410. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 12241 . . . 4 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ∈ ℕ)
21ad3antlr 763 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℕ)
3 nn0z 11277 . . . . 5 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
43ad2antlr 759 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℤ)
5 simpl 472 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐴 ∈ ℝ+)
65ad3antrrr 762 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ+)
76rpred 11748 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℝ)
82nnred 10912 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ∈ ℝ)
97, 8remulcld 9949 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℝ)
10 nn0re 11178 . . . . . . . . . . . 12 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
1110ad2antlr 759 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℝ)
129, 11resubcld 10337 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
1312recnd 9947 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
1413abscld 14023 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
155rpreccld 11758 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (1 / 𝐴) ∈ ℝ+)
1615rprege0d 11755 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)))
17 flge0nn0 12483 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
18 nn0p1nn 11209 . . . . . . . . . . . 12 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
1916, 17, 183syl 18 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
2019ad3antrrr 762 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
21 simpr 476 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2221ad3antrrr 762 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℕ)
2320, 22ifcld 4081 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
2423nnrecred 10943 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ∈ ℝ)
25 0red 9920 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 ∈ ℝ)
269, 25resubcld 10337 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) ∈ ℝ)
27 simpr 476 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
2820nnrecred 10943 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ)
2922nnred 10912 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ∈ ℝ)
306rprecred 11759 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ∈ ℝ)
3130flcld 12461 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℤ)
3231zred 11358 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (⌊‘(1 / 𝐴)) ∈ ℝ)
33 peano2re 10088 . . . . . . . . . . . . 13 ((⌊‘(1 / 𝐴)) ∈ ℝ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ)
35 max2 11892 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3629, 34, 35syl2anc 691 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
3720nngt0d 10941 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < ((⌊‘(1 / 𝐴)) + 1))
3823nnred 10912 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ)
3923nngt0d 10941 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
40 lerec 10785 . . . . . . . . . . . 12 (((((⌊‘(1 / 𝐴)) + 1) ∈ ℝ ∧ 0 < ((⌊‘(1 / 𝐴)) + 1)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4134, 37, 38, 39, 40syl22anc 1319 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (((⌊‘(1 / 𝐴)) + 1) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1))))
4236, 41mpbid 221 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / ((⌊‘(1 / 𝐴)) + 1)))
43 fllep1 12464 . . . . . . . . . . . . 13 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4430, 43syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ ((⌊‘(1 / 𝐴)) + 1))
4520nncnd 10913 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ∈ ℂ)
4620nnne0d 10942 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((⌊‘(1 / 𝐴)) + 1) ≠ 0)
4745, 46recrecd 10677 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))) = ((⌊‘(1 / 𝐴)) + 1))
4844, 47breqtrrd 4611 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1))))
4934, 37recgt0d 10837 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < (1 / ((⌊‘(1 / 𝐴)) + 1)))
506rpgt0d 11751 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐴)
51 lerec 10785 . . . . . . . . . . . 12 ((((1 / ((⌊‘(1 / 𝐴)) + 1)) ∈ ℝ ∧ 0 < (1 / ((⌊‘(1 / 𝐴)) + 1))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5228, 49, 7, 50, 51syl22anc 1319 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / (1 / ((⌊‘(1 / 𝐴)) + 1)))))
5348, 52mpbird 246 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / ((⌊‘(1 / 𝐴)) + 1)) ≤ 𝐴)
5424, 28, 7, 42, 53letrd 10073 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ 𝐴)
557recnd 9947 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ∈ ℂ)
5655mulid1d 9936 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) = 𝐴)
572nnge1d 10940 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ≤ 𝑎)
58 1red 9934 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 1 ∈ ℝ)
5958, 8, 6lemul2d 11792 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 ≤ 𝑎 ↔ (𝐴 · 1) ≤ (𝐴 · 𝑎)))
6057, 59mpbid 221 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 1) ≤ (𝐴 · 𝑎))
6156, 60eqbrtrrd 4607 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ (𝐴 · 𝑎))
629recnd 9947 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (𝐴 · 𝑎) ∈ ℂ)
6362subid1d 10260 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 0) = (𝐴 · 𝑎))
6461, 63breqtrrd 4611 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐴 ≤ ((𝐴 · 𝑎) − 0))
6524, 7, 26, 54, 64letrd 10073 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ ((𝐴 · 𝑎) − 0))
6614, 24, 26, 27, 65ltletrd 10076 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0))
6712, 26absltd 14016 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < ((𝐴 · 𝑎) − 0) ↔ (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))))
6866, 67mpbid 221 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (-((𝐴 · 𝑎) − 0) < ((𝐴 · 𝑎) − 𝑏) ∧ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
6968simprd 478 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0))
7025, 11, 9ltsub2d 10516 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (0 < 𝑏 ↔ ((𝐴 · 𝑎) − 𝑏) < ((𝐴 · 𝑎) − 0)))
7169, 70mpbird 246 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝑏)
72 elnnz 11264 . . . 4 (𝑏 ∈ ℕ ↔ (𝑏 ∈ ℤ ∧ 0 < 𝑏))
734, 71, 72sylanbrc 695 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑏 ∈ ℕ)
7422, 2ifcld 4081 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℕ)
7574nnrecred 10943 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝑎𝐵, 𝐵, 𝑎)) ∈ ℝ)
76 elfzle2 12216 . . . . . . 7 (𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7776ad3antlr 763 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
78 max1 11890 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
7929, 34, 78syl2anc 691 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
80 maxle 11896 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
818, 29, 38, 80syl3anc 1318 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (𝑎 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∧ 𝐵 ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))))
8277, 79, 81mpbir2and 959 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))
8329, 8ifcld 4081 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ)
8422nngt0d 10941 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < 𝐵)
85 max2 11892 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
868, 29, 85syl2anc 691 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 𝐵 ≤ if(𝑎𝐵, 𝐵, 𝑎))
8725, 29, 83, 84, 86ltletrd 10076 . . . . . 6 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → 0 < if(𝑎𝐵, 𝐵, 𝑎))
88 lerec 10785 . . . . . 6 (((if(𝑎𝐵, 𝐵, 𝑎) ∈ ℝ ∧ 0 < if(𝑎𝐵, 𝐵, 𝑎)) ∧ (if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℝ ∧ 0 < if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
8983, 87, 38, 39, 88syl22anc 1319 . . . . 5 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (if(𝑎𝐵, 𝐵, 𝑎) ≤ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ↔ (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎))))
9082, 89mpbid 221 . . . 4 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)) ≤ (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9114, 24, 75, 27, 90ltletrd 10076 . . 3 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)))
92 oveq2 6557 . . . . . . 7 (𝑥 = 𝑎 → (𝐴 · 𝑥) = (𝐴 · 𝑎))
9392oveq1d 6564 . . . . . 6 (𝑥 = 𝑎 → ((𝐴 · 𝑥) − 𝑦) = ((𝐴 · 𝑎) − 𝑦))
9493fveq2d 6107 . . . . 5 (𝑥 = 𝑎 → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑦)))
95 breq1 4586 . . . . . . 7 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
96 id 22 . . . . . . 7 (𝑥 = 𝑎𝑥 = 𝑎)
9795, 96ifbieq2d 4061 . . . . . 6 (𝑥 = 𝑎 → if(𝑥𝐵, 𝐵, 𝑥) = if(𝑎𝐵, 𝐵, 𝑎))
9897oveq2d 6565 . . . . 5 (𝑥 = 𝑎 → (1 / if(𝑥𝐵, 𝐵, 𝑥)) = (1 / if(𝑎𝐵, 𝐵, 𝑎)))
9994, 98breq12d 4596 . . . 4 (𝑥 = 𝑎 → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)) ↔ (abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
100 oveq2 6557 . . . . . 6 (𝑦 = 𝑏 → ((𝐴 · 𝑎) − 𝑦) = ((𝐴 · 𝑎) − 𝑏))
101100fveq2d 6107 . . . . 5 (𝑦 = 𝑏 → (abs‘((𝐴 · 𝑎) − 𝑦)) = (abs‘((𝐴 · 𝑎) − 𝑏)))
102101breq1d 4593 . . . 4 (𝑦 = 𝑏 → ((abs‘((𝐴 · 𝑎) − 𝑦)) < (1 / if(𝑎𝐵, 𝐵, 𝑎)) ↔ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))))
10399, 102rspc2ev 3295 . . 3 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎𝐵, 𝐵, 𝑎))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
1042, 73, 91, 103syl3anc 1318 . 2 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) ∧ 𝑏 ∈ ℕ0) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
10519, 21ifcld 4081 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ)
106 irrapxlem3 36406 . . 3 ((𝐴 ∈ ℝ+ ∧ if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵) ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
1075, 105, 106syl2anc 691 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (1...if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵))∃𝑏 ∈ ℕ0 (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝐵 ≤ ((⌊‘(1 / 𝐴)) + 1), ((⌊‘(1 / 𝐴)) + 1), 𝐵)))
108104, 107r19.29vva 3062 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥𝐵, 𝐵, 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  wrex 2897  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  +crp 11708  ...cfz 12197  cfl 12453  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  irrapxlem5  36408
  Copyright terms: Public domain W3C validator