Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem4 Structured version   Unicode version

Theorem irrapxlem4 31000
Description: Lemma for irrapx1 31003. Eliminate ranges, use positivity of the input to force positivity of the output by increasing  B as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem4  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem irrapxlem4
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 11717 . . . 4  |-  ( a  e.  ( 1 ...
if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )  -> 
a  e.  NN )
21ad3antlr 728 . . 3  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  a  e.  NN )
3 nn0z 10883 . . . . 5  |-  ( b  e.  NN0  ->  b  e.  ZZ )
43ad2antlr 724 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  b  e.  ZZ )
5 simpl 455 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  A  e.  RR+ )
65ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  e.  RR+ )
76rpred 11259 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  e.  RR )
82nnred 10546 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  a  e.  RR )
97, 8remulcld 9613 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  a )  e.  RR )
10 nn0re 10800 . . . . . . . . . . . 12  |-  ( b  e.  NN0  ->  b  e.  RR )
1110ad2antlr 724 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  b  e.  RR )
129, 11resubcld 9983 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  b )  e.  RR )
1312recnd 9611 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  b )  e.  CC )
1413abscld 13349 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  e.  RR )
155rpreccld 11269 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
1  /  A )  e.  RR+ )
1615rprege0d 11266 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
( 1  /  A
)  e.  RR  /\  0  <_  ( 1  /  A ) ) )
17 flge0nn0 11936 . . . . . . . . . . . 12  |-  ( ( ( 1  /  A
)  e.  RR  /\  0  <_  ( 1  /  A ) )  -> 
( |_ `  (
1  /  A ) )  e.  NN0 )
18 nn0p1nn 10831 . . . . . . . . . . . 12  |-  ( ( |_ `  ( 1  /  A ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  A ) )  +  1 )  e.  NN )
1916, 17, 183syl 20 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  NN )
2019ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  NN )
21 simpr 459 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  B  e.  NN )
2221ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  e.  NN )
2320, 22ifcld 3972 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  NN )
2423nnrecred 10577 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  e.  RR )
25 0red 9586 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  e.  RR )
269, 25resubcld 9983 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  0 )  e.  RR )
27 simpr 459 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )
2820nnrecred 10577 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) )  e.  RR )
2922nnred 10546 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  e.  RR )
306rprecred 11270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  A )  e.  RR )
3130flcld 11916 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( |_ `  ( 1  /  A ) )  e.  ZZ )
3231zred 10965 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( |_ `  ( 1  /  A ) )  e.  RR )
33 peano2re 9742 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( 1  /  A ) )  e.  RR  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  RR )
3432, 33syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  RR )
35 max2 11391 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( ( |_ `  ( 1  /  A
) )  +  1 )  e.  RR )  ->  ( ( |_
`  ( 1  /  A ) )  +  1 )  <_  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) )
3629, 34, 35syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )
3720nngt0d 10575 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  ( ( |_ `  ( 1  /  A
) )  +  1 ) )
3823nnred 10546 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  RR )
3923nngt0d 10575 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )
40 lerec 10422 . . . . . . . . . . . 12  |-  ( ( ( ( ( |_
`  ( 1  /  A ) )  +  1 )  e.  RR  /\  0  <  ( ( |_ `  ( 1  /  A ) )  +  1 ) )  /\  ( if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  e.  RR  /\  0  < 
if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) ) )  ->  ( ( ( |_ `  ( 1  /  A ) )  +  1 )  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
)  <->  ( 1  /  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
) )  <_  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) ) ) )
4134, 37, 38, 39, 40syl22anc 1227 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( ( |_ `  ( 1  /  A
) )  +  1 )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) ) ) )
4236, 41mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) ) )
43 fllep1 11919 . . . . . . . . . . . . 13  |-  ( ( 1  /  A )  e.  RR  ->  (
1  /  A )  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) )
4430, 43syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  A )  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) )
4520nncnd 10547 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  e.  CC )
4620nnne0d 10576 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( |_ `  (
1  /  A ) )  +  1 )  =/=  0 )
4745, 46recrecd 10313 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  ( 1  /  ( ( |_
`  ( 1  /  A ) )  +  1 ) ) )  =  ( ( |_
`  ( 1  /  A ) )  +  1 ) )
4844, 47breqtrrd 4465 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  A )  <_  ( 1  / 
( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) ) ) )
4934, 37recgt0d 10475 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  ( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) ) )
506rpgt0d 11262 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  A )
51 lerec 10422 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) )  e.  RR  /\  0  <  ( 1  /  ( ( |_
`  ( 1  /  A ) )  +  1 ) ) )  /\  ( A  e.  RR  /\  0  < 
A ) )  -> 
( ( 1  / 
( ( |_ `  ( 1  /  A
) )  +  1 ) )  <_  A  <->  ( 1  /  A )  <_  ( 1  / 
( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) ) ) ) )
5228, 49, 7, 50, 51syl22anc 1227 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( 1  /  (
( |_ `  (
1  /  A ) )  +  1 ) )  <_  A  <->  ( 1  /  A )  <_ 
( 1  /  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) ) ) ) )
5348, 52mpbird 232 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  A ) )  +  1 ) )  <_  A )
5424, 28, 7, 42, 53letrd 9728 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  A )
557recnd 9611 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  e.  CC )
5655mulid1d 9602 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  1 )  =  A )
572nnge1d 10574 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  1  <_  a )
58 1red 9600 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  1  e.  RR )
5958, 8, 6lemul2d 11299 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  <_  a  <->  ( A  x.  1 )  <_  ( A  x.  a )
) )
6057, 59mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  1 )  <_  ( A  x.  a ) )
6156, 60eqbrtrrd 4461 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  <_  ( A  x.  a
) )
629recnd 9611 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( A  x.  a )  e.  CC )
6362subid1d 9911 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  0 )  =  ( A  x.  a ) )
6461, 63breqtrrd 4465 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  A  <_  ( ( A  x.  a )  -  0 ) )
6524, 7, 26, 54, 64letrd 9728 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( ( A  x.  a )  - 
0 ) )
6614, 24, 26, 27, 65ltletrd 9731 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( ( A  x.  a )  -  0 ) )
6712, 26absltd 13343 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( abs `  (
( A  x.  a
)  -  b ) )  <  ( ( A  x.  a )  -  0 )  <->  ( -u (
( A  x.  a
)  -  0 )  <  ( ( A  x.  a )  -  b )  /\  (
( A  x.  a
)  -  b )  <  ( ( A  x.  a )  - 
0 ) ) ) )
6866, 67mpbid 210 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( -u ( ( A  x.  a )  -  0 )  <  ( ( A  x.  a )  -  b )  /\  ( ( A  x.  a )  -  b
)  <  ( ( A  x.  a )  -  0 ) ) )
6968simprd 461 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
( A  x.  a
)  -  b )  <  ( ( A  x.  a )  - 
0 ) )
7025, 11, 9ltsub2d 10158 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
0  <  b  <->  ( ( A  x.  a )  -  b )  < 
( ( A  x.  a )  -  0 ) ) )
7169, 70mpbird 232 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  b )
72 elnnz 10870 . . . 4  |-  ( b  e.  NN  <->  ( b  e.  ZZ  /\  0  < 
b ) )
734, 71, 72sylanbrc 662 . . 3  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  b  e.  NN )
7422, 2ifcld 3972 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( a  <_  B ,  B ,  a )  e.  NN )
7574nnrecred 10577 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( a  <_  B ,  B ,  a )
)  e.  RR )
76 elfzle2 11693 . . . . . . 7  |-  ( a  e.  ( 1 ...
if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )  -> 
a  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )
7776ad3antlr 728 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  a  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )
78 max1 11389 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( ( |_ `  ( 1  /  A
) )  +  1 )  e.  RR )  ->  B  <_  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) )
7929, 34, 78syl2anc 659 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) )
80 maxle 11394 . . . . . . 7  |-  ( ( a  e.  RR  /\  B  e.  RR  /\  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  RR )  -> 
( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
)  <->  ( a  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
)  /\  B  <_  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
) ) ) )
818, 29, 38, 80syl3anc 1226 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( a  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B )  /\  B  <_  if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B ) ) ) )
8277, 79, 81mpbir2and 920 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )
8329, 8ifcld 3972 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  if ( a  <_  B ,  B ,  a )  e.  RR )
8422nngt0d 10575 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  B )
85 max2 11391 . . . . . . . 8  |-  ( ( a  e.  RR  /\  B  e.  RR )  ->  B  <_  if (
a  <_  B ,  B ,  a )
)
868, 29, 85syl2anc 659 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  B  <_  if ( a  <_  B ,  B , 
a ) )
8725, 29, 83, 84, 86ltletrd 9731 . . . . . 6  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  0  <  if ( a  <_  B ,  B , 
a ) )
88 lerec 10422 . . . . . 6  |-  ( ( ( if ( a  <_  B ,  B ,  a )  e.  RR  /\  0  < 
if ( a  <_  B ,  B , 
a ) )  /\  ( if ( B  <_ 
( ( |_ `  ( 1  /  A
) )  +  1 ) ,  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  B )  e.  RR  /\  0  <  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) ) )  ->  ( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  /  if ( a  <_  B ,  B ,  a ) ) ) )
8983, 87, 38, 39, 88syl22anc 1227 . . . . 5  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( if ( a  <_  B ,  B ,  a )  <_  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B )  <->  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  /  if ( a  <_  B ,  B ,  a ) ) ) )
9082, 89mpbid 210 . . . 4  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  (
1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) )  <_  ( 1  /  if ( a  <_  B ,  B ,  a ) ) )
9114, 24, 75, 27, 90ltletrd 9731 . . 3  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  B ,  B ,  a ) ) )
92 oveq2 6278 . . . . . . 7  |-  ( x  =  a  ->  ( A  x.  x )  =  ( A  x.  a ) )
9392oveq1d 6285 . . . . . 6  |-  ( x  =  a  ->  (
( A  x.  x
)  -  y )  =  ( ( A  x.  a )  -  y ) )
9493fveq2d 5852 . . . . 5  |-  ( x  =  a  ->  ( abs `  ( ( A  x.  x )  -  y ) )  =  ( abs `  (
( A  x.  a
)  -  y ) ) )
95 breq1 4442 . . . . . . 7  |-  ( x  =  a  ->  (
x  <_  B  <->  a  <_  B ) )
96 id 22 . . . . . . 7  |-  ( x  =  a  ->  x  =  a )
9795, 96ifbieq2d 3954 . . . . . 6  |-  ( x  =  a  ->  if ( x  <_  B ,  B ,  x )  =  if ( a  <_  B ,  B , 
a ) )
9897oveq2d 6286 . . . . 5  |-  ( x  =  a  ->  (
1  /  if ( x  <_  B ,  B ,  x )
)  =  ( 1  /  if ( a  <_  B ,  B ,  a ) ) )
9994, 98breq12d 4452 . . . 4  |-  ( x  =  a  ->  (
( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) )  <->  ( abs `  ( ( A  x.  a )  -  y
) )  <  (
1  /  if ( a  <_  B ,  B ,  a )
) ) )
100 oveq2 6278 . . . . . 6  |-  ( y  =  b  ->  (
( A  x.  a
)  -  y )  =  ( ( A  x.  a )  -  b ) )
101100fveq2d 5852 . . . . 5  |-  ( y  =  b  ->  ( abs `  ( ( A  x.  a )  -  y ) )  =  ( abs `  (
( A  x.  a
)  -  b ) ) )
102101breq1d 4449 . . . 4  |-  ( y  =  b  ->  (
( abs `  (
( A  x.  a
)  -  y ) )  <  ( 1  /  if ( a  <_  B ,  B ,  a ) )  <-> 
( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( a  <_  B ,  B ,  a ) ) ) )
10399, 102rspc2ev 3218 . . 3  |-  ( ( a  e.  NN  /\  b  e.  NN  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( a  <_  B ,  B ,  a ) ) )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
1042, 73, 91, 103syl3anc 1226 . 2  |-  ( ( ( ( ( A  e.  RR+  /\  B  e.  NN )  /\  a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  /\  b  e.  NN0 )  /\  ( abs `  ( ( A  x.  a )  -  b ) )  < 
( 1  /  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
10519, 21ifcld 3972 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  NN )
106 irrapxlem3 30999 . . 3  |-  ( ( A  e.  RR+  /\  if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B )  e.  NN )  ->  E. a  e.  (
1 ... if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) ) E. b  e.  NN0  ( abs `  ( ( A  x.  a )  -  b ) )  <  ( 1  /  if ( B  <_  (
( |_ `  (
1  /  A ) )  +  1 ) ,  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  B
) ) )
1075, 105, 106syl2anc 659 . 2  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. a  e.  ( 1 ... if ( B  <_  ( ( |_ `  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  ( 1  /  A
) )  +  1 ) ,  B ) ) E. b  e. 
NN0  ( abs `  (
( A  x.  a
)  -  b ) )  <  ( 1  /  if ( B  <_  ( ( |_
`  ( 1  /  A ) )  +  1 ) ,  ( ( |_ `  (
1  /  A ) )  +  1 ) ,  B ) ) )
108104, 107r19.29vva 2998 1  |-  ( ( A  e.  RR+  /\  B  e.  NN )  ->  E. x  e.  NN  E. y  e.  NN  ( abs `  (
( A  x.  x
)  -  y ) )  <  ( 1  /  if ( x  <_  B ,  B ,  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823   E.wrex 2805   ifcif 3929   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9796   -ucneg 9797    / cdiv 10202   NNcn 10531   NN0cn0 10791   ZZcz 10860   RR+crp 11221   ...cfz 11675   |_cfl 11908   abscabs 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-fz 11676  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151
This theorem is referenced by:  irrapxlem5  31001
  Copyright terms: Public domain W3C validator