MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2d Structured version   Visualization version   GIF version

Theorem lemul2d 11792
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1 (𝜑𝐴 ∈ ℝ)
ltmul1d.2 (𝜑𝐵 ∈ ℝ)
ltmul1d.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
lemul2d (𝜑 → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))

Proof of Theorem lemul2d
StepHypRef Expression
1 ltmul1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltmul1d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltmul1d.3 . . 3 (𝜑𝐶 ∈ ℝ+)
43rpregt0d 11754 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
5 lemul2 10755 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
61, 2, 4, 5syl3anc 1318 1 (𝜑 → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815   · cmul 9820   < clt 9953  cle 9954  +crp 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-rp 11709
This theorem is referenced by:  abstri  13918  dveflem  23546  aalioulem4  23894  abelthlem7  23996  argrege0  24161  logcnlem4  24191  cxple2  24243  ftalem2  24600  bposlem6  24814  rplogsumlem2  24974  rpvmasumlem  24976  chpdifbndlem1  25042  pntlemr  25091  pntlemj  25092  pntlemf  25094  pntlemk  25095  ubthlem2  27111  nmcexi  28269  equivbnd  32759  irrapxlem4  36407  pell1qrgaplem  36455  wwlemuld  37474  stoweidlem11  38904  dirkertrigeqlem1  38991
  Copyright terms: Public domain W3C validator