Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Structured version   Visualization version   GIF version

Theorem irrapxlem5 36408
Description: Lemma for irrapx1 36410. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem irrapxlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
21rpreccld 11758 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (1 / 𝐵) ∈ ℝ+)
32rprege0d 11755 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)))
4 flge0nn0 12483 . . . 4 (((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
5 nn0p1nn 11209 . . . 4 ((⌊‘(1 / 𝐵)) ∈ ℕ0 → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
63, 4, 53syl 18 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
7 irrapxlem4 36407 . . 3 ((𝐴 ∈ ℝ+ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
86, 7syldan 486 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
9 simplrr 797 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℕ)
10 nnq 11677 . . . . . . 7 (𝑏 ∈ ℕ → 𝑏 ∈ ℚ)
119, 10syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℚ)
12 simplrl 796 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ)
13 nnq 11677 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℚ)
1412, 13syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℚ)
1512nnne0d 10942 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≠ 0)
16 qdivcl 11685 . . . . . 6 ((𝑏 ∈ ℚ ∧ 𝑎 ∈ ℚ ∧ 𝑎 ≠ 0) → (𝑏 / 𝑎) ∈ ℚ)
1711, 14, 15, 16syl3anc 1318 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℚ)
189nnrpd 11746 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ+)
1912nnrpd 11746 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ+)
2018, 19rpdivcld 11765 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ+)
2120rpgt0d 11751 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑏 / 𝑎))
2212nnred 10912 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ)
2312nnnn0d 11228 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ0)
2423nn0ge0d 11231 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ 𝑎)
2522, 24absidd 14009 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘𝑎) = 𝑎)
2625eqcomd 2616 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 = (abs‘𝑎))
2726oveq1d 6564 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
2812nncnd 10913 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℂ)
29 qre 11669 . . . . . . . . . . . . 13 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℝ)
3017, 29syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ)
31 rpre 11715 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3231ad3antrrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℝ)
3330, 32resubcld 10337 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℝ)
3433recnd 9947 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℂ)
3528, 34absmuld 14041 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
3627, 35eqtr4d 2647 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))))
37 qcn 11678 . . . . . . . . . . . 12 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℂ)
3817, 37syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℂ)
39 rpcn 11717 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4039ad3antrrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℂ)
4128, 38, 40subdid 10365 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)))
429nncnd 10913 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℂ)
4342, 28, 15divcan2d 10682 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (𝑏 / 𝑎)) = 𝑏)
4428, 40mulcomd 9940 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐴) = (𝐴 · 𝑎))
4543, 44oveq12d 6567 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4641, 45eqtrd 2644 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4746fveq2d 6107 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑏 − (𝐴 · 𝑎))))
4832, 22remulcld 9949 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℝ)
4948recnd 9947 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℂ)
5042, 49abssubd 14040 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑏 − (𝐴 · 𝑎))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
5136, 47, 503eqtrd 2648 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
529nnred 10912 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ)
5348, 52resubcld 10337 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
5453recnd 9947 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
5554abscld 14023 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
56 simpllr 795 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ+)
5756rprecred 11759 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ)
5856rpreccld 11758 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ+)
5958rpge0d 11752 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (1 / 𝐵))
6057, 59, 4syl2anc 691 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
6160, 5syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
6261nnrpd 11746 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ+)
6362, 19ifcld 4081 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ+)
6463rprecred 11759 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ∈ ℝ)
6556rpred 11748 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ)
6622, 65remulcld 9949 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐵) ∈ ℝ)
67 simpr 476 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
6858rprecred 11759 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ∈ ℝ)
6961nnred 10912 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ)
7069, 22ifcld 4081 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ)
71 fllep1 12464 . . . . . . . . . . . 12 ((1 / 𝐵) ∈ ℝ → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
7257, 71syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
73 max2 11892 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7422, 69, 73syl2anc 691 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7557, 69, 70, 72, 74letrd 10073 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7658, 63lerecd 11767 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵))))
7775, 76mpbid 221 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵)))
7865recnd 9947 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℂ)
7956rpne0d 11753 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ≠ 0)
8078, 79recrecd 10677 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = 𝐵)
8178mulid2d 9937 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) = 𝐵)
8280, 81eqtr4d 2647 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = (1 · 𝐵))
8312nnge1d 10940 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ≤ 𝑎)
84 1red 9934 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ∈ ℝ)
8584, 22, 56lemul1d 11791 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 ≤ 𝑎 ↔ (1 · 𝐵) ≤ (𝑎 · 𝐵)))
8683, 85mpbid 221 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) ≤ (𝑎 · 𝐵))
8782, 86eqbrtrd 4605 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ≤ (𝑎 · 𝐵))
8864, 68, 66, 77, 87letrd 10073 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (𝑎 · 𝐵))
8955, 64, 66, 67, 88ltletrd 10076 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (𝑎 · 𝐵))
9051, 89eqbrtrd 4605 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵))
9134abscld 14023 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ)
9212nngt0d 10941 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < 𝑎)
93 ltmul2 10753 . . . . . . 7 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9491, 65, 22, 92, 93syl112anc 1322 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9590, 94mpbird 246 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵)
9622, 22remulcld 9949 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℝ)
9722, 15msqgt0d 10474 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑎 · 𝑎))
9897gt0ne0d 10471 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ≠ 0)
9996, 98rereccld 10731 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ∈ ℝ)
100 qdencl 15287 . . . . . . . . . . 11 ((𝑏 / 𝑎) ∈ ℚ → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
10117, 100syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
102101nnred 10912 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℝ)
103102, 102remulcld 9949 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ)
104101nnne0d 10942 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≠ 0)
105102, 104msqgt0d 10474 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
106105gt0ne0d 10471 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≠ 0)
107103, 106rereccld 10731 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∈ ℝ)
10822, 15rereccld 10731 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝑎) ∈ ℝ)
109 max1 11890 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11022, 69, 109syl2anc 691 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11119, 63lerecd 11767 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎)))
112110, 111mpbid 221 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎))
11355, 64, 108, 67, 112ltletrd 10076 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / 𝑎))
11428, 28, 28, 15, 15divdiv1d 10711 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (𝑎 / (𝑎 · 𝑎)))
11528, 15dividd 10678 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / 𝑎) = 1)
116115oveq1d 6564 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (1 / 𝑎))
11796recnd 9947 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℂ)
11828, 117, 98divrecd 10683 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / (𝑎 · 𝑎)) = (𝑎 · (1 / (𝑎 · 𝑎))))
119114, 116, 1183eqtr3rd 2653 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (1 / (𝑎 · 𝑎))) = (1 / 𝑎))
120113, 51, 1193brtr4d 4615 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎))))
121 ltmul2 10753 . . . . . . . . 9 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ (1 / (𝑎 · 𝑎)) ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
12291, 99, 22, 92, 121syl112anc 1322 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
123120, 122mpbird 246 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)))
1249nnzd 11357 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℤ)
125 divdenle 15295 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℕ) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
126124, 12, 125syl2anc 691 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
127101nnnn0d 11228 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ0)
128127nn0ge0d 11231 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (denom‘(𝑏 / 𝑎)))
129 le2msq 10802 . . . . . . . . . 10 ((((denom‘(𝑏 / 𝑎)) ∈ ℝ ∧ 0 ≤ (denom‘(𝑏 / 𝑎))) ∧ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎)) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
130102, 128, 22, 24, 129syl22anc 1319 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
131126, 130mpbid 221 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎))
132 lerec 10785 . . . . . . . . 9 (((((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ ∧ 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∧ ((𝑎 · 𝑎) ∈ ℝ ∧ 0 < (𝑎 · 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
133103, 105, 96, 97, 132syl22anc 1319 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
134131, 133mpbid 221 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
13591, 99, 107, 123, 134ltletrd 10076 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
136101nncnd 10913 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℂ)
137 2nn0 11186 . . . . . . . 8 2 ∈ ℕ0
138 expneg 12730 . . . . . . . 8 (((denom‘(𝑏 / 𝑎)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
139136, 137, 138sylancl 693 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
140136sqvald 12867 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑2) = ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
141140oveq2d 6565 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎))↑2)) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
142139, 141eqtrd 2644 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
143135, 142breqtrrd 4611 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))
144 breq2 4587 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → (0 < 𝑥 ↔ 0 < (𝑏 / 𝑎)))
145 oveq1 6556 . . . . . . . . 9 (𝑥 = (𝑏 / 𝑎) → (𝑥𝐴) = ((𝑏 / 𝑎) − 𝐴))
146145fveq2d 6107 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → (abs‘(𝑥𝐴)) = (abs‘((𝑏 / 𝑎) − 𝐴)))
147146breq1d 4593 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵))
148 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝑏 / 𝑎) → (denom‘𝑥) = (denom‘(𝑏 / 𝑎)))
149148oveq1d 6564 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → ((denom‘𝑥)↑-2) = ((denom‘(𝑏 / 𝑎))↑-2))
150146, 149breq12d 4596 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2) ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2)))
151144, 147, 1503anbi123d 1391 . . . . . 6 (𝑥 = (𝑏 / 𝑎) → ((0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)) ↔ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))))
152151rspcev 3282 . . . . 5 (((𝑏 / 𝑎) ∈ ℚ ∧ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
15317, 21, 95, 143, 152syl13anc 1320 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
154153ex 449 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
155154rexlimdvva 3020 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
1568, 155mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cq 11664  +crp 11708  cfl 12453  cexp 12722  abscabs 13822  denomcdenom 15280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282
This theorem is referenced by:  irrapxlem6  36409
  Copyright terms: Public domain W3C validator