MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuplem Structured version   Visualization version   GIF version

Theorem frgpuplem 18008
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpup.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpuplem ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝐶(𝑦,𝑧)   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem frgpuplem
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 frgpup.r . . . . . . 7 = ( ~FG𝐼)
31, 2efgval 17953 . . . . . 6 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))}
4 coeq2 5202 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑇𝑢) = (𝑇𝑣))
54oveq2d 6565 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))
6 eqid 2610 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} = {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}
75, 6eqer 7664 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V
87a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V)
9 ssv 3588 . . . . . . . . . . 11 𝑊 ⊆ V
109a1i 11 . . . . . . . . . 10 (𝜑𝑊 ⊆ V)
118, 10erinxp 7708 . . . . . . . . 9 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊)
12 df-xp 5044 . . . . . . . . . . . . 13 (𝑊 × 𝑊) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)}
1312ineq1i 3772 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))})
14 incom 3767 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊))
15 inopab 5174 . . . . . . . . . . . 12 ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
1613, 14, 153eqtr3i 2640 . . . . . . . . . . 11 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
17 vex 3176 . . . . . . . . . . . . . 14 𝑢 ∈ V
18 vex 3176 . . . . . . . . . . . . . 14 𝑣 ∈ V
1917, 18prss 4291 . . . . . . . . . . . . 13 ((𝑢𝑊𝑣𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊)
2019anbi1i 727 . . . . . . . . . . . 12 (((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))))
2120opabbii 4649 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
2216, 21eqtri 2632 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
23 ereq1 7636 . . . . . . . . . 10 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
2422, 23ax-mp 5 . . . . . . . . 9 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
2511, 24sylib 207 . . . . . . . 8 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
26 simplrl 796 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑥𝑊)
27 fviss 6166 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
281, 27eqsstri 3598 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2𝑜)
2928, 26sseldi 3566 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑥 ∈ Word (𝐼 × 2𝑜))
30 opelxpi 5072 . . . . . . . . . . . . . . . 16 ((𝑎𝐼𝑏 ∈ 2𝑜) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2𝑜))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2𝑜))
32 simprl 790 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑎𝐼)
33 2oconcl 7470 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ 2𝑜 → (1𝑜𝑏) ∈ 2𝑜)
3433ad2antll 761 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (1𝑜𝑏) ∈ 2𝑜)
35 opelxpi 5072 . . . . . . . . . . . . . . . 16 ((𝑎𝐼 ∧ (1𝑜𝑏) ∈ 2𝑜) → ⟨𝑎, (1𝑜𝑏)⟩ ∈ (𝐼 × 2𝑜))
3632, 34, 35syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨𝑎, (1𝑜𝑏)⟩ ∈ (𝐼 × 2𝑜))
3731, 36s2cld 13466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜))
38 splcl 13354 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
3929, 37, 38syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
401efgrcl 17951 . . . . . . . . . . . . . . 15 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
4126, 40syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
4241simprd 478 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑊 = Word (𝐼 × 2𝑜))
4339, 42eleqtrrd 2691 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊)
4426, 43jca 553 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊))
45 swrdcl 13271 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word (𝐼 × 2𝑜) → (𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜))
4629, 45syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜))
47 frgpup.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (Base‘𝐻)
48 frgpup.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (invg𝐻)
49 frgpup.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
50 frgpup.h . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Grp)
51 frgpup.i . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝑉)
52 frgpup.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝐼𝐵)
5347, 48, 49, 50, 51, 52frgpuptf 18006 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
5453ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑇:(𝐼 × 2𝑜)⟶𝐵)
55 ccatco 13432 . . . . . . . . . . . . . . . . 17 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))
5646, 37, 54, 55syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))
5756oveq2d 6565 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
5850ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝐻 ∈ Grp)
59 grpmnd 17252 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝐻 ∈ Mnd)
61 wrdco 13428 . . . . . . . . . . . . . . . . 17 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵)
6246, 54, 61syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵)
63 wrdco 13428 . . . . . . . . . . . . . . . . 17 ((⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word 𝐵)
6437, 54, 63syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word 𝐵)
65 eqid 2610 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
6647, 65gsumccat 17201 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
6760, 62, 64, 66syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
6854, 31, 36s2co 13515 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1𝑜𝑏)⟩)”⟩)
69 df-ov 6552 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
7069a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩))
71 df-ov 6552 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎(𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)𝑏) = ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)
72 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
7372efgmval 17948 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎(𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)𝑏) = ⟨𝑎, (1𝑜𝑏)⟩)
7471, 73syl5eqr 2658 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐼𝑏 ∈ 2𝑜) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1𝑜𝑏)⟩)
7574adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1𝑜𝑏)⟩)
7675fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑇‘⟨𝑎, (1𝑜𝑏)⟩))
7747, 48, 49, 50, 51, 52, 72frgpuptinv 18007 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7830, 77sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7978adantlr 747 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
8076, 79eqtr3d 2646 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘⟨𝑎, (1𝑜𝑏)⟩) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
8169fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩))
8280, 81syl6reqr 2663 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘⟨𝑎, (1𝑜𝑏)⟩))
8370, 82s2eqd 13459 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩ = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1𝑜𝑏)⟩)”⟩)
8468, 83eqtr4d 2647 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) = ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩)
8584oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩))
86 simprr 792 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑏 ∈ 2𝑜)
8754, 32, 86fovrnd 6704 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑎𝑇𝑏) ∈ 𝐵)
8847, 48grpinvcl 17290 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8958, 87, 88syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
9047, 65gsumws2 17202 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
9160, 87, 89, 90syl3anc 1318 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
92 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (0g𝐻) = (0g𝐻)
9347, 65, 92, 48grprinv 17292 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9458, 87, 93syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9585, 91, 943eqtrd 2648 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = (0g𝐻))
9695oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(0g𝐻)))
9747gsumwcl 17200 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) ∈ 𝐵)
9860, 62, 97syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) ∈ 𝐵)
9947, 65, 92grprid 17276 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))))
10058, 98, 99syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))))
10196, 100eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))))
10257, 67, 1013eqtrrd 2649 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) = (𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
103102oveq1d 6564 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
104 swrdcl 13271 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word (𝐼 × 2𝑜) → (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜))
10529, 104syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜))
106 wrdco 13428 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵)
107105, 54, 106syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵)
10847, 65gsumccat 17201 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
10960, 62, 107, 108syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
110 ccatcl 13212 . . . . . . . . . . . . . . . 16 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜))
11146, 37, 110syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜))
112 wrdco 13428 . . . . . . . . . . . . . . 15 ((((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ∈ Word 𝐵)
113111, 54, 112syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ∈ Word 𝐵)
11447, 65gsumccat 17201 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
11560, 113, 107, 114syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
116103, 109, 1153eqtr4d 2654 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
117 simplrr 797 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑛 ∈ (0...(#‘𝑥)))
118 elfzuz 12209 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...(#‘𝑥)) → 𝑛 ∈ (ℤ‘0))
119 eluzfz1 12219 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘0) → 0 ∈ (0...𝑛))
120117, 118, 1193syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 0 ∈ (0...𝑛))
121 lencl 13179 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ Word (𝐼 × 2𝑜) → (#‘𝑥) ∈ ℕ0)
12229, 121syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (#‘𝑥) ∈ ℕ0)
123 nn0uz 11598 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
124122, 123syl6eleq 2698 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (#‘𝑥) ∈ (ℤ‘0))
125 eluzfz2 12220 . . . . . . . . . . . . . . . . . 18 ((#‘𝑥) ∈ (ℤ‘0) → (#‘𝑥) ∈ (0...(#‘𝑥)))
126124, 125syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (#‘𝑥) ∈ (0...(#‘𝑥)))
127 ccatswrd 13308 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (𝐼 × 2𝑜) ∧ (0 ∈ (0...𝑛) ∧ 𝑛 ∈ (0...(#‘𝑥)) ∧ (#‘𝑥) ∈ (0...(#‘𝑥)))) → ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) = (𝑥 substr ⟨0, (#‘𝑥)⟩))
12829, 120, 117, 126, 127syl13anc 1320 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) = (𝑥 substr ⟨0, (#‘𝑥)⟩))
129 swrdid 13280 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word (𝐼 × 2𝑜) → (𝑥 substr ⟨0, (#‘𝑥)⟩) = 𝑥)
13029, 129syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 substr ⟨0, (#‘𝑥)⟩) = 𝑥)
131128, 130eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) = 𝑥)
132131coeq2d 5206 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = (𝑇𝑥))
133 ccatco 13432 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
13446, 105, 54, 133syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
135132, 134eqtr3d 2646 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇𝑥) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
136135oveq2d 6565 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
137 splval 13353 . . . . . . . . . . . . . . . 16 ((𝑥𝑊 ∧ (𝑛 ∈ (0...(#‘𝑥)) ∧ 𝑛 ∈ (0...(#‘𝑥)) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜))) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))
13826, 117, 117, 37, 137syl13anc 1320 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))
139138coeq2d 5206 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) = (𝑇 ∘ (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
140 ccatco 13432 . . . . . . . . . . . . . . 15 ((((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜) ∧ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
141111, 105, 54, 140syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
142139, 141eqtrd 2644 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) = ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
143142oveq2d 6565 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
144116, 136, 1433eqtr4d 2654 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
145 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
146 ovex 6577 . . . . . . . . . . . 12 (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ V
147 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑢𝑊𝑥𝑊))
148 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → (𝑣𝑊 ↔ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊))
149147, 148bi2anan9 913 . . . . . . . . . . . . . 14 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ((𝑢𝑊𝑣𝑊) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊)))
15019, 149syl5bbr 273 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊)))
151 coeq2 5202 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑇𝑢) = (𝑇𝑥))
152151oveq2d 6565 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑥)))
153 coeq2 5202 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → (𝑇𝑣) = (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
154153oveq2d 6565 . . . . . . . . . . . . . 14 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
155152, 154eqeqan12d 2626 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))))
156150, 155anbi12d 743 . . . . . . . . . . . 12 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))))
157 eqid 2610 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
158145, 146, 156, 157braba 4917 . . . . . . . . . . 11 (𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))))
15944, 144, 158sylanbrc 695 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
160159ralrimivva 2954 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) → ∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
161160ralrimivva 2954 . . . . . . . 8 (𝜑 → ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
162 fvex 6113 . . . . . . . . . . 11 ( I ‘Word (𝐼 × 2𝑜)) ∈ V
1631, 162eqeltri 2684 . . . . . . . . . 10 𝑊 ∈ V
164 erex 7653 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 → (𝑊 ∈ V → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V))
16525, 163, 164mpisyl 21 . . . . . . . . 9 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V)
166 ereq1 7636 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑟 Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
167 breq 4585 . . . . . . . . . . . . 13 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
1681672ralbidv 2972 . . . . . . . . . . . 12 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
1691682ralbidv 2972 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
170166, 169anbi12d 743 . . . . . . . . . 10 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
171170elabg 3320 . . . . . . . . 9 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
172165, 171syl 17 . . . . . . . 8 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
17325, 161, 172mpbir2and 959 . . . . . . 7 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))})
174 intss1 4427 . . . . . . 7 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
175173, 174syl 17 . . . . . 6 (𝜑 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
1763, 175syl5eqss 3612 . . . . 5 (𝜑 ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
177176ssbrd 4626 . . . 4 (𝜑 → (𝐴 𝐶𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶))
178177imp 444 . . 3 ((𝜑𝐴 𝐶) → 𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶)
1791, 2efger 17954 . . . . . 6 Er 𝑊
180 errel 7638 . . . . . 6 ( Er 𝑊 → Rel )
181179, 180mp1i 13 . . . . 5 (𝜑 → Rel )
182 brrelex12 5079 . . . . 5 ((Rel 𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
183181, 182sylan 487 . . . 4 ((𝜑𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
184 preq12 4214 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶})
185184sseq1d 3595 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊))
186 coeq2 5202 . . . . . . . 8 (𝑢 = 𝐴 → (𝑇𝑢) = (𝑇𝐴))
187186oveq2d 6565 . . . . . . 7 (𝑢 = 𝐴 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝐴)))
188 coeq2 5202 . . . . . . . 8 (𝑣 = 𝐶 → (𝑇𝑣) = (𝑇𝐶))
189188oveq2d 6565 . . . . . . 7 (𝑣 = 𝐶 → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇𝐶)))
190187, 189eqeqan12d 2626 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
191185, 190anbi12d 743 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
192191, 157brabga 4914 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
193183, 192syl 17 . . 3 ((𝜑𝐴 𝐶) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
194178, 193mpbid 221 . 2 ((𝜑𝐴 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
195194simprd 478 1 ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  {cpr 4127  cop 4131  cotp 4133   cint 4410   class class class wbr 4583  {copab 4642   I cid 4948   × cxp 5036  ccom 5042  Rel wrel 5043  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441   Er wer 7626  0cc0 9815  0cn0 11169  cuz 11563  ...cfz 12197  #chash 12979  Word cword 13146   ++ cconcat 13148   substr csubstr 13150   splice csplice 13151  ⟨“cs2 13437  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Grpcgrp 17245  invgcminusg 17246   ~FG cefg 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-efg 17945
This theorem is referenced by:  frgpupf  18009
  Copyright terms: Public domain W3C validator