MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Visualization version   GIF version

Theorem efgmval 17948
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
Assertion
Ref Expression
efgmval ((𝐴𝐼𝐵 ∈ 2𝑜) → (𝐴𝑀𝐵) = ⟨𝐴, (1𝑜𝐵)⟩)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4340 . 2 (𝑎 = 𝐴 → ⟨𝑎, (1𝑜𝑏)⟩ = ⟨𝐴, (1𝑜𝑏)⟩)
2 difeq2 3684 . . 3 (𝑏 = 𝐵 → (1𝑜𝑏) = (1𝑜𝐵))
32opeq2d 4347 . 2 (𝑏 = 𝐵 → ⟨𝐴, (1𝑜𝑏)⟩ = ⟨𝐴, (1𝑜𝐵)⟩)
4 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
5 opeq1 4340 . . . 4 (𝑦 = 𝑎 → ⟨𝑦, (1𝑜𝑧)⟩ = ⟨𝑎, (1𝑜𝑧)⟩)
6 difeq2 3684 . . . . 5 (𝑧 = 𝑏 → (1𝑜𝑧) = (1𝑜𝑏))
76opeq2d 4347 . . . 4 (𝑧 = 𝑏 → ⟨𝑎, (1𝑜𝑧)⟩ = ⟨𝑎, (1𝑜𝑏)⟩)
85, 7cbvmpt2v 6633 . . 3 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑎𝐼, 𝑏 ∈ 2𝑜 ↦ ⟨𝑎, (1𝑜𝑏)⟩)
94, 8eqtri 2632 . 2 𝑀 = (𝑎𝐼, 𝑏 ∈ 2𝑜 ↦ ⟨𝑎, (1𝑜𝑏)⟩)
10 opex 4859 . 2 𝐴, (1𝑜𝐵)⟩ ∈ V
111, 3, 9, 10ovmpt2 6694 1 ((𝐴𝐼𝐵 ∈ 2𝑜) → (𝐴𝑀𝐵) = ⟨𝐴, (1𝑜𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cdif 3537  cop 4131  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554
This theorem is referenced by:  efgmnvl  17950  efgval2  17960  vrgpinv  18005  frgpuptinv  18007  frgpuplem  18008  frgpnabllem1  18099
  Copyright terms: Public domain W3C validator