MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptinv Structured version   Visualization version   GIF version

Theorem frgpuptinv 18007
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpuptinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
Assertion
Ref Expression
frgpuptinv ((𝜑𝐴 ∈ (𝐼 × 2𝑜)) → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem frgpuptinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5056 . . 3 (𝐴 ∈ (𝐼 × 2𝑜) ↔ ∃𝑎𝐼𝑏 ∈ 2𝑜 𝐴 = ⟨𝑎, 𝑏⟩)
2 frgpuptinv.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
32efgmval 17948 . . . . . . . . 9 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎𝑀𝑏) = ⟨𝑎, (1𝑜𝑏)⟩)
43adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑎𝑀𝑏) = ⟨𝑎, (1𝑜𝑏)⟩)
54fveq2d 6107 . . . . . . 7 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑇‘⟨𝑎, (1𝑜𝑏)⟩))
6 df-ov 6552 . . . . . . 7 (𝑎𝑇(1𝑜𝑏)) = (𝑇‘⟨𝑎, (1𝑜𝑏)⟩)
75, 6syl6eqr 2662 . . . . . 6 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑎𝑇(1𝑜𝑏)))
8 elpri 4145 . . . . . . . . 9 (𝑏 ∈ {∅, 1𝑜} → (𝑏 = ∅ ∨ 𝑏 = 1𝑜))
9 df2o3 7460 . . . . . . . . 9 2𝑜 = {∅, 1𝑜}
108, 9eleq2s 2706 . . . . . . . 8 (𝑏 ∈ 2𝑜 → (𝑏 = ∅ ∨ 𝑏 = 1𝑜))
11 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → 𝑎𝐼)
12 1on 7454 . . . . . . . . . . . . . . 15 1𝑜 ∈ On
1312elexi 3186 . . . . . . . . . . . . . 14 1𝑜 ∈ V
1413prid2 4242 . . . . . . . . . . . . 13 1𝑜 ∈ {∅, 1𝑜}
1514, 9eleqtrri 2687 . . . . . . . . . . . 12 1𝑜 ∈ 2𝑜
16 1n0 7462 . . . . . . . . . . . . . . . 16 1𝑜 ≠ ∅
17 neeq1 2844 . . . . . . . . . . . . . . . 16 (𝑧 = 1𝑜 → (𝑧 ≠ ∅ ↔ 1𝑜 ≠ ∅))
1816, 17mpbiri 247 . . . . . . . . . . . . . . 15 (𝑧 = 1𝑜𝑧 ≠ ∅)
19 ifnefalse 4048 . . . . . . . . . . . . . . 15 (𝑧 ≠ ∅ → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝑁‘(𝐹𝑦)))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝑧 = 1𝑜 → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝑁‘(𝐹𝑦)))
21 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
2221fveq2d 6107 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝑁‘(𝐹𝑦)) = (𝑁‘(𝐹𝑎)))
2320, 22sylan9eqr 2666 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑧 = 1𝑜) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝑁‘(𝐹𝑎)))
24 frgpup.t . . . . . . . . . . . . 13 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
25 fvex 6113 . . . . . . . . . . . . 13 (𝑁‘(𝐹𝑎)) ∈ V
2623, 24, 25ovmpt2a 6689 . . . . . . . . . . . 12 ((𝑎𝐼 ∧ 1𝑜 ∈ 2𝑜) → (𝑎𝑇1𝑜) = (𝑁‘(𝐹𝑎)))
2711, 15, 26sylancl 693 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑎𝑇1𝑜) = (𝑁‘(𝐹𝑎)))
28 0ex 4718 . . . . . . . . . . . . . . 15 ∅ ∈ V
2928prid1 4241 . . . . . . . . . . . . . 14 ∅ ∈ {∅, 1𝑜}
3029, 9eleqtrri 2687 . . . . . . . . . . . . 13 ∅ ∈ 2𝑜
31 iftrue 4042 . . . . . . . . . . . . . . 15 (𝑧 = ∅ → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝑦))
3231, 21sylan9eqr 2666 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑧 = ∅) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝑎))
33 fvex 6113 . . . . . . . . . . . . . 14 (𝐹𝑎) ∈ V
3432, 24, 33ovmpt2a 6689 . . . . . . . . . . . . 13 ((𝑎𝐼 ∧ ∅ ∈ 2𝑜) → (𝑎𝑇∅) = (𝐹𝑎))
3511, 30, 34sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → (𝑎𝑇∅) = (𝐹𝑎))
3635fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑁‘(𝑎𝑇∅)) = (𝑁‘(𝐹𝑎)))
3727, 36eqtr4d 2647 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑎𝑇1𝑜) = (𝑁‘(𝑎𝑇∅)))
38 difeq2 3684 . . . . . . . . . . . . 13 (𝑏 = ∅ → (1𝑜𝑏) = (1𝑜 ∖ ∅))
39 dif0 3904 . . . . . . . . . . . . 13 (1𝑜 ∖ ∅) = 1𝑜
4038, 39syl6eq 2660 . . . . . . . . . . . 12 (𝑏 = ∅ → (1𝑜𝑏) = 1𝑜)
4140oveq2d 6565 . . . . . . . . . . 11 (𝑏 = ∅ → (𝑎𝑇(1𝑜𝑏)) = (𝑎𝑇1𝑜))
42 oveq2 6557 . . . . . . . . . . . 12 (𝑏 = ∅ → (𝑎𝑇𝑏) = (𝑎𝑇∅))
4342fveq2d 6107 . . . . . . . . . . 11 (𝑏 = ∅ → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇∅)))
4441, 43eqeq12d 2625 . . . . . . . . . 10 (𝑏 = ∅ → ((𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇1𝑜) = (𝑁‘(𝑎𝑇∅))))
4537, 44syl5ibrcom 236 . . . . . . . . 9 ((𝜑𝑎𝐼) → (𝑏 = ∅ → (𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
4637fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑁‘(𝑎𝑇1𝑜)) = (𝑁‘(𝑁‘(𝑎𝑇∅))))
47 frgpup.h . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Grp)
4847adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → 𝐻 ∈ Grp)
49 frgpup.a . . . . . . . . . . . . . 14 (𝜑𝐹:𝐼𝐵)
5049ffvelrnda 6267 . . . . . . . . . . . . 13 ((𝜑𝑎𝐼) → (𝐹𝑎) ∈ 𝐵)
5135, 50eqeltrd 2688 . . . . . . . . . . . 12 ((𝜑𝑎𝐼) → (𝑎𝑇∅) ∈ 𝐵)
52 frgpup.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐻)
53 frgpup.n . . . . . . . . . . . . 13 𝑁 = (invg𝐻)
5452, 53grpinvinv 17305 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ (𝑎𝑇∅) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅))
5548, 51, 54syl2anc 691 . . . . . . . . . . 11 ((𝜑𝑎𝐼) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅))
5646, 55eqtr2d 2645 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1𝑜)))
57 difeq2 3684 . . . . . . . . . . . . 13 (𝑏 = 1𝑜 → (1𝑜𝑏) = (1𝑜 ∖ 1𝑜))
58 difid 3902 . . . . . . . . . . . . 13 (1𝑜 ∖ 1𝑜) = ∅
5957, 58syl6eq 2660 . . . . . . . . . . . 12 (𝑏 = 1𝑜 → (1𝑜𝑏) = ∅)
6059oveq2d 6565 . . . . . . . . . . 11 (𝑏 = 1𝑜 → (𝑎𝑇(1𝑜𝑏)) = (𝑎𝑇∅))
61 oveq2 6557 . . . . . . . . . . . 12 (𝑏 = 1𝑜 → (𝑎𝑇𝑏) = (𝑎𝑇1𝑜))
6261fveq2d 6107 . . . . . . . . . . 11 (𝑏 = 1𝑜 → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇1𝑜)))
6360, 62eqeq12d 2625 . . . . . . . . . 10 (𝑏 = 1𝑜 → ((𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1𝑜))))
6456, 63syl5ibrcom 236 . . . . . . . . 9 ((𝜑𝑎𝐼) → (𝑏 = 1𝑜 → (𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
6545, 64jaod 394 . . . . . . . 8 ((𝜑𝑎𝐼) → ((𝑏 = ∅ ∨ 𝑏 = 1𝑜) → (𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
6610, 65syl5 33 . . . . . . 7 ((𝜑𝑎𝐼) → (𝑏 ∈ 2𝑜 → (𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
6766impr 647 . . . . . 6 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑎𝑇(1𝑜𝑏)) = (𝑁‘(𝑎𝑇𝑏)))
687, 67eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏)))
69 fveq2 6103 . . . . . . . 8 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
70 df-ov 6552 . . . . . . . 8 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
7169, 70syl6eqr 2662 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
7271fveq2d 6107 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇‘(𝑀𝐴)) = (𝑇‘(𝑎𝑀𝑏)))
73 fveq2 6103 . . . . . . . 8 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇𝐴) = (𝑇‘⟨𝑎, 𝑏⟩))
74 df-ov 6552 . . . . . . . 8 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
7573, 74syl6eqr 2662 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇𝐴) = (𝑎𝑇𝑏))
7675fveq2d 6107 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑁‘(𝑇𝐴)) = (𝑁‘(𝑎𝑇𝑏)))
7772, 76eqeq12d 2625 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴)) ↔ (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏))))
7868, 77syl5ibrcom 236 . . . 4 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴))))
7978rexlimdvva 3020 . . 3 (𝜑 → (∃𝑎𝐼𝑏 ∈ 2𝑜 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴))))
801, 79syl5bi 231 . 2 (𝜑 → (𝐴 ∈ (𝐼 × 2𝑜) → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴))))
8180imp 444 1 ((𝜑𝐴 ∈ (𝐼 × 2𝑜)) → (𝑇‘(𝑀𝐴)) = (𝑁‘(𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  c0 3874  ifcif 4036  {cpr 4127  cop 4131   × cxp 5036  Oncon0 5640  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  Basecbs 15695  Grpcgrp 17245  invgcminusg 17246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1o 7447  df-2o 7448  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  frgpuplem  18008
  Copyright terms: Public domain W3C validator