MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptf Structured version   Visualization version   GIF version

Theorem frgpuptf 18006
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
Assertion
Ref Expression
frgpuptf (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem frgpuptf
StepHypRef Expression
1 frgpup.a . . . . . 6 (𝜑𝐹:𝐼𝐵)
21ffvelrnda 6267 . . . . 5 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ 𝐵)
32adantrr 749 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → (𝐹𝑦) ∈ 𝐵)
4 frgpup.h . . . . . 6 (𝜑𝐻 ∈ Grp)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝐻 ∈ Grp)
6 frgpup.b . . . . . 6 𝐵 = (Base‘𝐻)
7 frgpup.n . . . . . 6 𝑁 = (invg𝐻)
86, 7grpinvcl 17290 . . . . 5 ((𝐻 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
95, 3, 8syl2anc 691 . . . 4 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → (𝑁‘(𝐹𝑦)) ∈ 𝐵)
103, 9ifcld 4081 . . 3 ((𝜑 ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
1110ralrimivva 2954 . 2 (𝜑 → ∀𝑦𝐼𝑧 ∈ 2𝑜 if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵)
12 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
1312fmpt2 7126 . 2 (∀𝑦𝐼𝑧 ∈ 2𝑜 if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) ∈ 𝐵𝑇:(𝐼 × 2𝑜)⟶𝐵)
1411, 13sylib 207 1 (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  c0 3874  ifcif 4036   × cxp 5036  wf 5800  cfv 5804  cmpt2 6551  2𝑜c2o 7441  Basecbs 15695  Grpcgrp 17245  invgcminusg 17246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  frgpuplem  18008  frgpupf  18009  frgpup1  18011  frgpup2  18012  frgpup3lem  18013
  Copyright terms: Public domain W3C validator