MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval Structured version   Visualization version   GIF version

Theorem efgval 17953
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgval = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   ,𝑟,𝑥,𝑦,𝑧   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧
Allowed substitution hint:   (𝑛)

Proof of Theorem efgval
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.r . 2 = ( ~FG𝐼)
2 vex 3176 . . . . . . . . . . . 12 𝑖 ∈ V
3 2on 7455 . . . . . . . . . . . . 13 2𝑜 ∈ On
43elexi 3186 . . . . . . . . . . . 12 2𝑜 ∈ V
52, 4xpex 6860 . . . . . . . . . . 11 (𝑖 × 2𝑜) ∈ V
6 wrdexg 13170 . . . . . . . . . . 11 ((𝑖 × 2𝑜) ∈ V → Word (𝑖 × 2𝑜) ∈ V)
7 fvi 6165 . . . . . . . . . . 11 (Word (𝑖 × 2𝑜) ∈ V → ( I ‘Word (𝑖 × 2𝑜)) = Word (𝑖 × 2𝑜))
85, 6, 7mp2b 10 . . . . . . . . . 10 ( I ‘Word (𝑖 × 2𝑜)) = Word (𝑖 × 2𝑜)
9 xpeq1 5052 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 × 2𝑜) = (𝐼 × 2𝑜))
10 wrdeq 13182 . . . . . . . . . . . 12 ((𝑖 × 2𝑜) = (𝐼 × 2𝑜) → Word (𝑖 × 2𝑜) = Word (𝐼 × 2𝑜))
119, 10syl 17 . . . . . . . . . . 11 (𝑖 = 𝐼 → Word (𝑖 × 2𝑜) = Word (𝐼 × 2𝑜))
1211fveq2d 6107 . . . . . . . . . 10 (𝑖 = 𝐼 → ( I ‘Word (𝑖 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜)))
138, 12syl5eqr 2658 . . . . . . . . 9 (𝑖 = 𝐼 → Word (𝑖 × 2𝑜) = ( I ‘Word (𝐼 × 2𝑜)))
14 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
1513, 14syl6eqr 2662 . . . . . . . 8 (𝑖 = 𝐼 → Word (𝑖 × 2𝑜) = 𝑊)
16 ereq2 7637 . . . . . . . 8 (Word (𝑖 × 2𝑜) = 𝑊 → (𝑟 Er Word (𝑖 × 2𝑜) ↔ 𝑟 Er 𝑊))
1715, 16syl 17 . . . . . . 7 (𝑖 = 𝐼 → (𝑟 Er Word (𝑖 × 2𝑜) ↔ 𝑟 Er 𝑊))
18 raleq 3115 . . . . . . . . 9 (𝑖 = 𝐼 → (∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
1918ralbidv 2969 . . . . . . . 8 (𝑖 = 𝐼 → (∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
2015, 19raleqbidv 3129 . . . . . . 7 (𝑖 = 𝐼 → (∀𝑥 ∈ Word (𝑖 × 2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
2117, 20anbi12d 743 . . . . . 6 (𝑖 = 𝐼 → ((𝑟 Er Word (𝑖 × 2𝑜) ∧ ∀𝑥 ∈ Word (𝑖 × 2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) ↔ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))))
2221abbidv 2728 . . . . 5 (𝑖 = 𝐼 → {𝑟 ∣ (𝑟 Er Word (𝑖 × 2𝑜) ∧ ∀𝑥 ∈ Word (𝑖 × 2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))})
2322inteqd 4415 . . . 4 (𝑖 = 𝐼 {𝑟 ∣ (𝑟 Er Word (𝑖 × 2𝑜) ∧ ∀𝑥 ∈ Word (𝑖 × 2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))})
24 df-efg 17945 . . . 4 ~FG = (𝑖 ∈ V ↦ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2𝑜) ∧ ∀𝑥 ∈ Word (𝑖 × 2𝑜)∀𝑛 ∈ (0...(#‘𝑥))∀𝑦𝑖𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))})
2514efglem 17952 . . . . 5 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
26 intexab 4749 . . . . 5 (∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) ↔ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ∈ V)
2725, 26mpbi 219 . . . 4 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ∈ V
2823, 24, 27fvmpt 6191 . . 3 (𝐼 ∈ V → ( ~FG𝐼) = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))})
29 fvprc 6097 . . . 4 𝐼 ∈ V → ( ~FG𝐼) = ∅)
30 abn0 3908 . . . . . . . 8 ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ≠ ∅ ↔ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
3125, 30mpbir 220 . . . . . . 7 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ≠ ∅
32 intssuni 4434 . . . . . . 7 ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ≠ ∅ → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ⊆ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))})
3331, 32ax-mp 5 . . . . . 6 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ⊆ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}
34 erssxp 7652 . . . . . . . . . . . 12 (𝑟 Er 𝑊𝑟 ⊆ (𝑊 × 𝑊))
3514efgrcl 17951 . . . . . . . . . . . . . . . . . 18 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
3635simpld 474 . . . . . . . . . . . . . . . . 17 (𝑥𝑊𝐼 ∈ V)
3736con3i 149 . . . . . . . . . . . . . . . 16 𝐼 ∈ V → ¬ 𝑥𝑊)
3837eq0rdv 3931 . . . . . . . . . . . . . . 15 𝐼 ∈ V → 𝑊 = ∅)
3938xpeq2d 5063 . . . . . . . . . . . . . 14 𝐼 ∈ V → (𝑊 × 𝑊) = (𝑊 × ∅))
40 xp0 5471 . . . . . . . . . . . . . 14 (𝑊 × ∅) = ∅
4139, 40syl6eq 2660 . . . . . . . . . . . . 13 𝐼 ∈ V → (𝑊 × 𝑊) = ∅)
42 ss0b 3925 . . . . . . . . . . . . 13 ((𝑊 × 𝑊) ⊆ ∅ ↔ (𝑊 × 𝑊) = ∅)
4341, 42sylibr 223 . . . . . . . . . . . 12 𝐼 ∈ V → (𝑊 × 𝑊) ⊆ ∅)
4434, 43sylan9ssr 3582 . . . . . . . . . . 11 ((¬ 𝐼 ∈ V ∧ 𝑟 Er 𝑊) → 𝑟 ⊆ ∅)
4544ex 449 . . . . . . . . . 10 𝐼 ∈ V → (𝑟 Er 𝑊𝑟 ⊆ ∅))
4645adantrd 483 . . . . . . . . 9 𝐼 ∈ V → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) → 𝑟 ⊆ ∅))
4746alrimiv 1842 . . . . . . . 8 𝐼 ∈ V → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) → 𝑟 ⊆ ∅))
48 sseq1 3589 . . . . . . . . 9 (𝑤 = 𝑟 → (𝑤 ⊆ ∅ ↔ 𝑟 ⊆ ∅))
4948ralab2 3338 . . . . . . . 8 (∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}𝑤 ⊆ ∅ ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) → 𝑟 ⊆ ∅))
5047, 49sylibr 223 . . . . . . 7 𝐼 ∈ V → ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}𝑤 ⊆ ∅)
51 unissb 4405 . . . . . . 7 ( {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ⊆ ∅ ↔ ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}𝑤 ⊆ ∅)
5250, 51sylibr 223 . . . . . 6 𝐼 ∈ V → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ⊆ ∅)
5333, 52syl5ss 3579 . . . . 5 𝐼 ∈ V → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ⊆ ∅)
54 ss0 3926 . . . . 5 ( {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} ⊆ ∅ → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} = ∅)
5553, 54syl 17 . . . 4 𝐼 ∈ V → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))} = ∅)
5629, 55eqtr4d 2647 . . 3 𝐼 ∈ V → ( ~FG𝐼) = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))})
5728, 56pm2.61i 175 . 2 ( ~FG𝐼) = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}
581, 57eqtri 2632 1 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  c0 3874  cop 4131  cotp 4133   cuni 4372   cint 4410   class class class wbr 4583   I cid 4948   × cxp 5036  Oncon0 5640  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441   Er wer 7626  0cc0 9815  ...cfz 12197  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437   ~FG cefg 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444  df-efg 17945
This theorem is referenced by:  efger  17954  efgi  17955  efgval2  17960  frgpuplem  18008
  Copyright terms: Public domain W3C validator