Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prmfac Structured version   Visualization version   GIF version

Theorem fmtno4prmfac 40022
Description: If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prmfac ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))

Proof of Theorem fmtno4prmfac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2z 11286 . . . . 5 2 ∈ ℤ
2 4z 11288 . . . . 5 4 ∈ ℤ
3 2re 10967 . . . . . 6 2 ∈ ℝ
4 4re 10974 . . . . . 6 4 ∈ ℝ
5 2lt4 11075 . . . . . 6 2 < 4
63, 4, 5ltleii 10039 . . . . 5 2 ≤ 4
7 eluz2 11569 . . . . 5 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
81, 2, 6, 7mpbir3an 1237 . . . 4 4 ∈ (ℤ‘2)
9 fmtnoprmfac2 40017 . . . 4 ((4 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
108, 9mp3an1 1403 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
11 elnnuz 11600 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
12 4nn 11064 . . . . . . . . . 10 4 ∈ ℕ
13 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
1412, 13eleqtri 2686 . . . . . . . . 9 4 ∈ (ℤ‘1)
15 fzouzsplit 12372 . . . . . . . . 9 (4 ∈ (ℤ‘1) → (ℤ‘1) = ((1..^4) ∪ (ℤ‘4)))
1614, 15ax-mp 5 . . . . . . . 8 (ℤ‘1) = ((1..^4) ∪ (ℤ‘4))
1716eleq2i 2680 . . . . . . 7 (𝑘 ∈ (ℤ‘1) ↔ 𝑘 ∈ ((1..^4) ∪ (ℤ‘4)))
18 elun 3715 . . . . . . . 8 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ (𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)))
19 fzo1to4tp 12423 . . . . . . . . . . 11 (1..^4) = {1, 2, 3}
2019eleq2i 2680 . . . . . . . . . 10 (𝑘 ∈ (1..^4) ↔ 𝑘 ∈ {1, 2, 3})
21 vex 3176 . . . . . . . . . . 11 𝑘 ∈ V
2221eltp 4177 . . . . . . . . . 10 (𝑘 ∈ {1, 2, 3} ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2320, 22bitri 263 . . . . . . . . 9 (𝑘 ∈ (1..^4) ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2423orbi1i 541 . . . . . . . 8 ((𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2518, 24bitri 263 . . . . . . 7 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2611, 17, 253bitri 285 . . . . . 6 (𝑘 ∈ ℕ ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
27 4p2e6 11039 . . . . . . . . . . . . 13 (4 + 2) = 6
2827oveq2i 6560 . . . . . . . . . . . 12 (2↑(4 + 2)) = (2↑6)
29 2exp6 15633 . . . . . . . . . . . 12 (2↑6) = 64
3028, 29eqtri 2632 . . . . . . . . . . 11 (2↑(4 + 2)) = 64
3130oveq2i 6560 . . . . . . . . . 10 (𝑘 · (2↑(4 + 2))) = (𝑘 · 64)
3231oveq1i 6559 . . . . . . . . 9 ((𝑘 · (2↑(4 + 2))) + 1) = ((𝑘 · 64) + 1)
3332eqeq2i 2622 . . . . . . . 8 (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) ↔ 𝑃 = ((𝑘 · 64) + 1))
34 simpl 472 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = ((𝑘 · 64) + 1))
35 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 · 64) = (1 · 64))
36 6nn0 11190 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℕ0
37 4nn0 11188 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ0
3836, 37deccl 11388 . . . . . . . . . . . . . . . . . . . . 21 64 ∈ ℕ0
3938nn0cni 11181 . . . . . . . . . . . . . . . . . . . 20 64 ∈ ℂ
4039mulid2i 9922 . . . . . . . . . . . . . . . . . . 19 (1 · 64) = 64
4135, 40syl6eq 2660 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 · 64) = 64)
4241oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝑘 · 64) + 1) = (64 + 1))
43 4p1e5 11031 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
44 eqid 2610 . . . . . . . . . . . . . . . . . 18 64 = 64
4536, 37, 43, 44decsuc 11411 . . . . . . . . . . . . . . . . 17 (64 + 1) = 65
4642, 45syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝑘 · 64) + 1) = 65)
4746adantl 481 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → ((𝑘 · 64) + 1) = 65)
4834, 47eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = 65)
4948ex 449 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 1 → 𝑃 = 65))
50 simpl 472 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = ((𝑘 · 64) + 1))
51 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 · 64) = (2 · 64))
52 2nn0 11186 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ0
53 6cn 10979 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℂ
54 2cn 10968 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
55 6t2e12 11517 . . . . . . . . . . . . . . . . . . . . . 22 (6 · 2) = 12
5653, 54, 55mulcomli 9926 . . . . . . . . . . . . . . . . . . . . 21 (2 · 6) = 12
5756eqcomi 2619 . . . . . . . . . . . . . . . . . . . 20 12 = (2 · 6)
58 4cn 10975 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℂ
59 4t2e8 11058 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 2) = 8
6058, 54, 59mulcomli 9926 . . . . . . . . . . . . . . . . . . . . 21 (2 · 4) = 8
6160eqcomi 2619 . . . . . . . . . . . . . . . . . . . 20 8 = (2 · 4)
6236, 37, 52, 57, 61decmul10add 11469 . . . . . . . . . . . . . . . . . . 19 (2 · 64) = (120 + 8)
6351, 62syl6eq 2660 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 · 64) = (120 + 8))
6463oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → ((𝑘 · 64) + 1) = ((120 + 8) + 1))
65 1nn0 11185 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
6665, 52deccl 11388 . . . . . . . . . . . . . . . . . 18 12 ∈ ℕ0
67 8nn0 11192 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ0
68 8p1e9 11035 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
69 0nn0 11184 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
70 eqid 2610 . . . . . . . . . . . . . . . . . . 19 120 = 120
71 8cn 10983 . . . . . . . . . . . . . . . . . . . 20 8 ∈ ℂ
7271addid2i 10103 . . . . . . . . . . . . . . . . . . 19 (0 + 8) = 8
7366, 69, 67, 70, 72decaddi 11455 . . . . . . . . . . . . . . . . . 18 (120 + 8) = 128
7466, 67, 68, 73decsuc 11411 . . . . . . . . . . . . . . . . 17 ((120 + 8) + 1) = 129
7564, 74syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → ((𝑘 · 64) + 1) = 129)
7675adantl 481 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → ((𝑘 · 64) + 1) = 129)
7750, 76eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = 129)
7877ex 449 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 2 → 𝑃 = 129))
79 simpl 472 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = ((𝑘 · 64) + 1))
80 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 3 → (𝑘 · 64) = (3 · 64))
81 3nn0 11187 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℕ0
82 6t3e18 11518 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = 18
83 3cn 10972 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℂ
8453, 83mulcomi 9925 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = (3 · 6)
8582, 84eqtr3i 2634 . . . . . . . . . . . . . . . . . . . 20 18 = (3 · 6)
86 4t3e12 11508 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = 12
8758, 83mulcomi 9925 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = (3 · 4)
8886, 87eqtr3i 2634 . . . . . . . . . . . . . . . . . . . 20 12 = (3 · 4)
8936, 37, 81, 85, 88decmul10add 11469 . . . . . . . . . . . . . . . . . . 19 (3 · 64) = (180 + 12)
9080, 89syl6eq 2660 . . . . . . . . . . . . . . . . . 18 (𝑘 = 3 → (𝑘 · 64) = (180 + 12))
9190oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑘 = 3 → ((𝑘 · 64) + 1) = ((180 + 12) + 1))
92 9nn0 11193 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ0
9365, 92deccl 11388 . . . . . . . . . . . . . . . . . 18 19 ∈ ℕ0
94 2p1e3 11028 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
9565, 67deccl 11388 . . . . . . . . . . . . . . . . . . 19 18 ∈ ℕ0
96 eqid 2610 . . . . . . . . . . . . . . . . . . 19 180 = 180
97 eqid 2610 . . . . . . . . . . . . . . . . . . 19 12 = 12
98 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 18 = 18
9965, 67, 68, 98decsuc 11411 . . . . . . . . . . . . . . . . . . 19 (18 + 1) = 19
10054addid2i 10103 . . . . . . . . . . . . . . . . . . 19 (0 + 2) = 2
10195, 69, 65, 52, 96, 97, 99, 100decadd 11446 . . . . . . . . . . . . . . . . . 18 (180 + 12) = 192
10293, 52, 94, 101decsuc 11411 . . . . . . . . . . . . . . . . 17 ((180 + 12) + 1) = 193
10391, 102syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑘 = 3 → ((𝑘 · 64) + 1) = 193)
104103adantl 481 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → ((𝑘 · 64) + 1) = 193)
10579, 104eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = 193)
106105ex 449 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 3 → 𝑃 = 193))
10749, 78, 1063orim123d 1399 . . . . . . . . . . . 12 (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
108107a1i 11 . . . . . . . . . . 11 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
109108com13 86 . . . . . . . . . 10 ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
110 fmtno4sqrt 40021 . . . . . . . . . . . . 13 (⌊‘(√‘(FermatNo‘4))) = 256
111110breq2i 4591 . . . . . . . . . . . 12 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) ↔ 𝑃256)
112 breq1 4586 . . . . . . . . . . . . . 14 (𝑃 = ((𝑘 · 64) + 1) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
113112adantl 481 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
114 eluz2 11569 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘))
115 6t4e24 11519 . . . . . . . . . . . . . . . . . . . . . . 23 (6 · 4) = 24
11653, 58, 115mulcomli 9926 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 6) = 24
11752, 37, 43, 116decsuc 11411 . . . . . . . . . . . . . . . . . . . . 21 ((4 · 6) + 1) = 25
118 4t4e16 11509 . . . . . . . . . . . . . . . . . . . . 21 (4 · 4) = 16
11937, 36, 37, 44, 36, 65, 117, 118decmul2c 11465 . . . . . . . . . . . . . . . . . . . 20 (4 · 64) = 256
120 zre 11258 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12138nn0rei 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 64 ∈ ℝ
12236, 12decnncl 11394 . . . . . . . . . . . . . . . . . . . . . . . . 25 64 ∈ ℕ
123122nngt0i 10931 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 64
124121, 123pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . 23 (64 ∈ ℝ ∧ 0 < 64)
125124a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (64 ∈ ℝ ∧ 0 < 64))
126 lemul1 10754 . . . . . . . . . . . . . . . . . . . . . 22 ((4 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (64 ∈ ℝ ∧ 0 < 64)) → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
1274, 120, 125, 126mp3an2i 1421 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
128127biimpa 500 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (4 · 64) ≤ (𝑘 · 64))
129119, 128syl5eqbrr 4619 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 ≤ (𝑘 · 64))
130 5nn0 11189 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ0
13152, 130deccl 11388 . . . . . . . . . . . . . . . . . . . . . 22 25 ∈ ℕ0
132131, 36deccl 11388 . . . . . . . . . . . . . . . . . . . . 21 256 ∈ ℕ0
133132nn0zi 11279 . . . . . . . . . . . . . . . . . . . 20 256 ∈ ℤ
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
13538nn0zi 11279 . . . . . . . . . . . . . . . . . . . . . . 23 64 ∈ ℤ
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 64 ∈ ℤ)
137134, 136zmulcld 11364 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (𝑘 · 64) ∈ ℤ)
138137adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (𝑘 · 64) ∈ ℤ)
139 zleltp1 11305 . . . . . . . . . . . . . . . . . . . 20 ((256 ∈ ℤ ∧ (𝑘 · 64) ∈ ℤ) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
140133, 138, 139sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
141129, 140mpbid 221 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
1421413adant1 1072 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
143114, 142sylbi 206 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → 256 < ((𝑘 · 64) + 1))
144132nn0rei 11180 . . . . . . . . . . . . . . . . . 18 256 ∈ ℝ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → 256 ∈ ℝ)
146 eluzelre 11574 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 𝑘 ∈ ℝ)
147121a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 64 ∈ ℝ)
148146, 147remulcld 9949 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘4) → (𝑘 · 64) ∈ ℝ)
149 peano2re 10088 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 64) ∈ ℝ → ((𝑘 · 64) + 1) ∈ ℝ)
150148, 149syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → ((𝑘 · 64) + 1) ∈ ℝ)
151145, 150ltnled 10063 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → (256 < ((𝑘 · 64) + 1) ↔ ¬ ((𝑘 · 64) + 1) ≤ 256))
152143, 151mpbid 221 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘4) → ¬ ((𝑘 · 64) + 1) ≤ 256)
153152pm2.21d 117 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘4) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
154153adantr 480 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
155113, 154sylbid 229 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
156111, 155syl5bi 231 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
157156ex 449 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘4) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
158109, 157jaoi 393 . . . . . . . . 9 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
159158adantr 480 . . . . . . . 8 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16033, 159syl5bi 231 . . . . . . 7 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
161160ex 449 . . . . . 6 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
16226, 161sylbi 206 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
163162com12 32 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑘 ∈ ℕ → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
164163rexlimdv 3012 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16510, 164mpd 15 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
1661653impia 1253 1 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cun 3538  {ctp 4129   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cn 10897  2c2 10947  3c3 10948  4c4 10949  5c5 10950  6c6 10951  8c8 10953  9c9 10954  cz 11254  cdc 11369  cuz 11563  ..^cfzo 12334  cfl 12453  cexp 12722  csqrt 13821  cdvds 14821  cprime 15223  FermatNocfmtno 39977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055  df-prm 15224  df-odz 15308  df-phi 15309  df-pc 15380  df-lgs 24820  df-fmtno 39978
This theorem is referenced by:  fmtno4prmfac193  40023
  Copyright terms: Public domain W3C validator