Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4t4e16 | Structured version Visualization version GIF version |
Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t4e16 | ⊢ (4 · 4) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 11188 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 3nn0 11187 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | df-4 10958 | . 2 ⊢ 4 = (3 + 1) | |
4 | 4t3e12 11508 | . 2 ⊢ (4 · 3) = ;12 | |
5 | 1nn0 11185 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 11186 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2610 | . . 3 ⊢ ;12 = ;12 | |
8 | 4cn 10975 | . . . 4 ⊢ 4 ∈ ℂ | |
9 | 2cn 10968 | . . . 4 ⊢ 2 ∈ ℂ | |
10 | 4p2e6 11039 | . . . 4 ⊢ (4 + 2) = 6 | |
11 | 8, 9, 10 | addcomli 10107 | . . 3 ⊢ (2 + 4) = 6 |
12 | 5, 6, 1, 7, 11 | decaddi 11455 | . 2 ⊢ (;12 + 4) = ;16 |
13 | 1, 2, 3, 4, 12 | 4t3lem 11507 | 1 ⊢ (4 · 4) = ;16 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 (class class class)co 6549 1c1 9816 · cmul 9820 2c2 10947 3c3 10948 4c4 10949 6c6 10951 ;cdc 11369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-dec 11370 |
This theorem is referenced by: 2exp4 15632 2503lem2 15683 4001lem1 15686 4001lem2 15687 quart1lem 24382 quart1 24383 wallispi2lem1 38964 fmtno4prmfac 40022 fmtno5faclem1 40029 |
Copyright terms: Public domain | W3C validator |