Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Visualization version   GIF version

Theorem efiatan2 24444
 Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 9874 . . . . 5 i ∈ ℂ
2 atancl 24408 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
3 mulcl 9899 . . . . 5 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (i · (arctan‘𝐴)) ∈ ℂ)
41, 2, 3sylancr 694 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) ∈ ℂ)
5 efcl 14652 . . . 4 ((i · (arctan‘𝐴)) ∈ ℂ → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
64, 5syl 17 . . 3 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
7 ax-1cn 9873 . . . . 5 1 ∈ ℂ
8 atandm2 24404 . . . . . . 7 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1069 . . . . . 6 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
109sqcld 12868 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
11 addcl 9897 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
127, 10, 11sylancr 694 . . . 4 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
1312sqrtcld 14024 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
1412sqsqrtd 14026 . . . . 5 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
15 atandm4 24406 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simprbi 479 . . . . 5 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
1714, 16eqnetrd 2849 . . . 4 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
18 sqne0 12792 . . . . 5 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
1913, 18syl 17 . . . 4 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
2017, 19mpbid 221 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
216, 13, 20divcan4d 10686 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = (exp‘(i · (arctan‘𝐴))))
22 halfcn 11124 . . . . . . 7 (1 / 2) ∈ ℂ
2312, 16logcld 24121 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 + (𝐴↑2))) ∈ ℂ)
24 mulcl 9899 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (𝐴↑2))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
2522, 23, 24sylancr 694 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
26 efadd 14663 . . . . . 6 (((i · (arctan‘𝐴)) ∈ ℂ ∧ ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ) → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
274, 25, 26syl2anc 691 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
28 2cn 10968 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
30 mulcl 9899 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
311, 9, 30sylancr 694 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
32 addcl 9897 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
337, 31, 32sylancr 694 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
348simp3bi 1071 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3533, 34logcld 24121 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3629, 35, 4subdid 10365 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))))
37 atanval 24411 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3837oveq2d 6565 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
391a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → i ∈ ℂ)
4029, 39, 2mulassd 9942 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
41 halfcl 11134 . . . . . . . . . . . . . . . . . 18 (i ∈ ℂ → (i / 2) ∈ ℂ)
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 (i / 2) ∈ ℂ
4328, 1, 42mulassi 9928 . . . . . . . . . . . . . . . 16 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
4428, 1, 42mul12i 10110 . . . . . . . . . . . . . . . 16 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
45 2ne0 10990 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
461, 28, 45divcan2i 10647 . . . . . . . . . . . . . . . . . 18 (2 · (i / 2)) = i
4746oveq2i 6560 . . . . . . . . . . . . . . . . 17 (i · (2 · (i / 2))) = (i · i)
48 ixi 10535 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4947, 48eqtri 2632 . . . . . . . . . . . . . . . 16 (i · (2 · (i / 2))) = -1
5043, 44, 493eqtri 2636 . . . . . . . . . . . . . . 15 ((2 · i) · (i / 2)) = -1
5150oveq1i 6559 . . . . . . . . . . . . . 14 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
52 subcl 10159 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
537, 31, 52sylancr 694 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
548simp2bi 1070 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
5553, 54logcld 24121 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
5655, 35subcld 10271 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
5756mulm1d 10361 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
5851, 57syl5eq 2656 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
59 2mulicn 11132 . . . . . . . . . . . . . . 15 (2 · i) ∈ ℂ
6059a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6142a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
6260, 61, 56mulassd 9942 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
6355, 35negsubdi2d 10287 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6458, 62, 633eqtr3d 2652 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6538, 40, 643eqtr3d 2652 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6665oveq2d 6565 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
67 mulcl 9899 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6828, 35, 67sylancr 694 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6968, 35, 55subsubd 10299 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))))
70352timesd 11152 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
7170oveq1d 6564 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))))
7235, 35pncand 10272 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (log‘(1 + (i · 𝐴))))
7371, 72eqtrd 2644 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (log‘(1 + (i · 𝐴))))
7473oveq1d 6564 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
75 atanlogadd 24441 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
76 logef 24132 . . . . . . . . . . . . 13 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
7775, 76syl 17 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
78 efadd 14663 . . . . . . . . . . . . . . 15 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
7935, 55, 78syl2anc 691 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
80 eflog 24127 . . . . . . . . . . . . . . . 16 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
8133, 34, 80syl2anc 691 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
82 eflog 24127 . . . . . . . . . . . . . . . 16 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8353, 54, 82syl2anc 691 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8481, 83oveq12d 6567 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
85 sq1 12820 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
8685a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (1↑2) = 1)
87 sqmul 12788 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
881, 9, 87sylancr 694 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
89 i2 12827 . . . . . . . . . . . . . . . . . . 19 (i↑2) = -1
9089oveq1i 6559 . . . . . . . . . . . . . . . . . 18 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
9110mulm1d 10361 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom arctan → (-1 · (𝐴↑2)) = -(𝐴↑2))
9290, 91syl5eq 2656 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
9388, 92eqtrd 2644 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = -(𝐴↑2))
9486, 93oveq12d 6567 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
95 subsq 12834 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
967, 31, 95sylancr 694 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
97 subneg 10209 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
987, 10, 97sylancr 694 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
9994, 96, 983eqtr3d 2652 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
10079, 84, 993eqtrd 2648 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = (1 + (𝐴↑2)))
101100fveq2d 6107 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = (log‘(1 + (𝐴↑2))))
10277, 101eqtr3d 2646 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = (log‘(1 + (𝐴↑2))))
10369, 74, 1023eqtrd 2648 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (log‘(1 + (𝐴↑2))))
10436, 66, 1033eqtrd 2648 . . . . . . . . 9 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = (log‘(1 + (𝐴↑2))))
105104oveq1d 6564 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (𝐴↑2))) / 2))
10635, 4subcld 10271 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) ∈ ℂ)
10745a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ≠ 0)
108106, 29, 107divcan3d 10685 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))))
10923, 29, 107divrec2d 10684 . . . . . . . 8 (𝐴 ∈ dom arctan → ((log‘(1 + (𝐴↑2))) / 2) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
110105, 108, 1093eqtr3d 2652 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
11135, 4, 25subaddd 10289 . . . . . . 7 (𝐴 ∈ dom arctan → (((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))) ↔ ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴)))))
112110, 111mpbid 221 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴))))
113112fveq2d 6107 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11427, 113eqtr3d 2646 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11522a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
11612, 16, 115cxpefd 24258 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))))
117 cxpsqrt 24249 . . . . . . 7 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
11812, 117syl 17 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
119116, 118eqtr3d 2646 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))) = (√‘(1 + (𝐴↑2))))
120119oveq2d 6565 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))))
121114, 120, 813eqtr3d 2652 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) = (1 + (i · 𝐴)))
122121oveq1d 6564 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
12321, 122eqtr3d 2646 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  dom cdm 5038  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820   − cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  ↑cexp 12722  √csqrt 13821  expce 14631  logclog 24105  ↑𝑐ccxp 24106  arctancatan 24391 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-atan 24394 This theorem is referenced by:  cosatan  24448
 Copyright terms: Public domain W3C validator