MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Unicode version

Theorem efiatan2 22334
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2  |-  ( A  e.  dom arctan  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  / 
( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 9362 . . . . 5  |-  _i  e.  CC
2 atancl 22298 . . . . 5  |-  ( A  e.  dom arctan  ->  (arctan `  A )  e.  CC )
3 mulcl 9387 . . . . 5  |-  ( ( _i  e.  CC  /\  (arctan `  A )  e.  CC )  ->  (
_i  x.  (arctan `  A
) )  e.  CC )
41, 2, 3sylancr 663 . . . 4  |-  ( A  e.  dom arctan  ->  ( _i  x.  (arctan `  A
) )  e.  CC )
5 efcl 13389 . . . 4  |-  ( ( _i  x.  (arctan `  A ) )  e.  CC  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  e.  CC )
64, 5syl 16 . . 3  |-  ( A  e.  dom arctan  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  e.  CC )
7 ax-1cn 9361 . . . . 5  |-  1  e.  CC
8 atandm2 22294 . . . . . . 7  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
98simp1bi 1003 . . . . . 6  |-  ( A  e.  dom arctan  ->  A  e.  CC )
109sqcld 12027 . . . . 5  |-  ( A  e.  dom arctan  ->  ( A ^ 2 )  e.  CC )
11 addcl 9385 . . . . 5  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  +  ( A ^ 2 ) )  e.  CC )
127, 10, 11sylancr 663 . . . 4  |-  ( A  e.  dom arctan  ->  ( 1  +  ( A ^
2 ) )  e.  CC )
1312sqrcld 12944 . . 3  |-  ( A  e.  dom arctan  ->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  e.  CC )
1412sqsqrd 12946 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( sqr `  ( 1  +  ( A ^
2 ) ) ) ^ 2 )  =  ( 1  +  ( A ^ 2 ) ) )
15 atandm4 22296 . . . . . 6  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  +  ( A ^
2 ) )  =/=  0 ) )
1615simprbi 464 . . . . 5  |-  ( A  e.  dom arctan  ->  ( 1  +  ( A ^
2 ) )  =/=  0 )
1714, 16eqnetrd 2654 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( sqr `  ( 1  +  ( A ^
2 ) ) ) ^ 2 )  =/=  0 )
18 sqne0 11953 . . . . 5  |-  ( ( sqr `  ( 1  +  ( A ^
2 ) ) )  e.  CC  ->  (
( ( sqr `  (
1  +  ( A ^ 2 ) ) ) ^ 2 )  =/=  0  <->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  =/=  0
) )
1913, 18syl 16 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( ( sqr `  (
1  +  ( A ^ 2 ) ) ) ^ 2 )  =/=  0  <->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  =/=  0
) )
2017, 19mpbid 210 . . 3  |-  ( A  e.  dom arctan  ->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  =/=  0
)
216, 13, 20divcan4d 10134 . 2  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
_i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )  /  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )  =  ( exp `  (
_i  x.  (arctan `  A
) ) ) )
22 halfcn 10562 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
2312, 16logcld 22044 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( A ^ 2 ) ) )  e.  CC )
24 mulcl 9387 . . . . . . 7  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( log `  ( 1  +  ( A ^
2 ) ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) )  e.  CC )
2522, 23, 24sylancr 663 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) )  e.  CC )
26 efadd 13400 . . . . . 6  |-  ( ( ( _i  x.  (arctan `  A ) )  e.  CC  /\  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) )  e.  CC )  ->  ( exp `  (
( _i  x.  (arctan `  A ) )  +  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )  =  ( ( exp `  (
_i  x.  (arctan `  A
) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) ) )
274, 25, 26syl2anc 661 . . . . 5  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( _i  x.  (arctan `  A ) )  +  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) ) )  =  ( ( exp `  ( _i  x.  (arctan `  A ) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) ) )
28 2cn 10413 . . . . . . . . . . . 12  |-  2  e.  CC
2928a1i 11 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  2  e.  CC )
30 mulcl 9387 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
311, 9, 30sylancr 663 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( _i  x.  A )  e.  CC )
32 addcl 9385 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
337, 31, 32sylancr 663 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
348simp3bi 1005 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
3533, 34logcld 22044 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
3629, 35, 4subdid 9821 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  -  (
2  x.  ( _i  x.  (arctan `  A
) ) ) ) )
37 atanval 22301 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
3837oveq2d 6128 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  (arctan `  A
) )  =  ( ( 2  x.  _i )  x.  ( (
_i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) ) )
391a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  _i  e.  CC )
4029, 39, 2mulassd 9430 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  (arctan `  A
) )  =  ( 2  x.  ( _i  x.  (arctan `  A
) ) ) )
41 halfcl 10571 . . . . . . . . . . . . . . . . . 18  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( _i 
/  2 )  e.  CC
4328, 1, 42mulassi 9416 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  _i )  x.  ( _i  / 
2 ) )  =  ( 2  x.  (
_i  x.  ( _i  /  2 ) ) )
4428, 1, 42mul12i 9585 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( _i  x.  ( _i  /  2
) ) )  =  ( _i  x.  (
2  x.  ( _i 
/  2 ) ) )
45 2ne0 10435 . . . . . . . . . . . . . . . . . . 19  |-  2  =/=  0
461, 28, 45divcan2i 10095 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  ( _i  / 
2 ) )  =  _i
4746oveq2i 6123 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  ( 2  x.  ( _i  /  2
) ) )  =  ( _i  x.  _i )
48 ixi 9986 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  _i )  = 
-u 1
4947, 48eqtri 2463 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  ( 2  x.  ( _i  /  2
) ) )  = 
-u 1
5043, 44, 493eqtri 2467 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  _i )  x.  ( _i  / 
2 ) )  = 
-u 1
5150oveq1i 6122 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( -u 1  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
52 subcl 9630 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
537, 31, 52sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
548simp2bi 1004 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
5553, 54logcld 22044 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
5655, 35subcld 9740 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  CC )
5756mulm1d 9817 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( -u
1  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )  = 
-u ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
5851, 57syl5eq 2487 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  -u ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
59 2mulicn 10569 . . . . . . . . . . . . . . 15  |-  ( 2  x.  _i )  e.  CC
6059a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  e.  CC )
6142a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( _i 
/  2 )  e.  CC )
6260, 61, 56mulassd 9430 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( 2  x.  _i )  x.  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
6355, 35negsubdi2d 9756 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  -u (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )
6458, 62, 633eqtr3d 2483 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
6538, 40, 643eqtr3d 2483 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  x.  (arctan `  A ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
6665oveq2d 6128 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  -  (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
67 mulcl 9387 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )  -> 
( 2  x.  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  e.  CC )
6828, 35, 67sylancr 663 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  CC )
6968, 35, 55subsubd 9768 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )
70352timesd 10588 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
7170oveq1d 6127 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
7235, 35pncand 9741 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
7371, 72eqtrd 2475 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
7473oveq1d 6127 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
75 atanlogadd 22331 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
76 logef 22052 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log  ->  ( log `  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
7775, 76syl 16 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( log `  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
78 efadd 13400 . . . . . . . . . . . . . . 15  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  e.  CC  /\  ( log `  ( 1  -  ( _i  x.  A ) ) )  e.  CC )  -> 
( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  x.  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7935, 55, 78syl2anc 661 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  x.  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
80 eflog 22050 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  ->  ( exp `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  =  ( 1  +  ( _i  x.  A
) ) )
8133, 34, 80syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  =  ( 1  +  ( _i  x.  A ) ) )
82 eflog 22050 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0 )  ->  ( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  =  ( 1  -  ( _i  x.  A
) ) )
8353, 54, 82syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( 1  -  ( _i  x.  A ) ) )
8481, 83oveq12d 6130 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  x.  ( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  x.  ( 1  -  ( _i  x.  A
) ) ) )
85 sq1 11981 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
8685a1i 11 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom arctan  ->  ( 1 ^ 2 )  =  1 )
87 sqmul 11950 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( ( _i  x.  A ) ^ 2 )  =  ( ( _i ^ 2 )  x.  ( A ^
2 ) ) )
881, 9, 87sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  A ) ^ 2 )  =  ( ( _i ^
2 )  x.  ( A ^ 2 ) ) )
89 i2 11987 . . . . . . . . . . . . . . . . . . 19  |-  ( _i
^ 2 )  = 
-u 1
9089oveq1i 6122 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  =  ( -u 1  x.  ( A ^ 2 ) )
9110mulm1d 9817 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  dom arctan  ->  ( -u
1  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
9290, 91syl5eq 2487 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  = 
-u ( A ^
2 ) )
9388, 92eqtrd 2475 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  A ) ^ 2 )  = 
-u ( A ^
2 ) )
9486, 93oveq12d 6130 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( ( 1 ^ 2 )  -  ( ( _i  x.  A ) ^
2 ) )  =  ( 1  -  -u ( A ^ 2 ) ) )
95 subsq 11994 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( ( 1 ^ 2 )  -  ( ( _i  x.  A ) ^ 2 ) )  =  ( ( 1  +  ( _i  x.  A ) )  x.  ( 1  -  ( _i  x.  A ) ) ) )
967, 31, 95sylancr 663 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( ( 1 ^ 2 )  -  ( ( _i  x.  A ) ^
2 ) )  =  ( ( 1  +  ( _i  x.  A
) )  x.  (
1  -  ( _i  x.  A ) ) ) )
97 subneg 9679 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  -u ( A ^ 2 ) )  =  ( 1  +  ( A ^ 2 ) ) )
987, 10, 97sylancr 663 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( 1  -  -u ( A ^
2 ) )  =  ( 1  +  ( A ^ 2 ) ) )
9994, 96, 983eqtr3d 2483 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( _i  x.  A ) )  x.  ( 1  -  ( _i  x.  A
) ) )  =  ( 1  +  ( A ^ 2 ) ) )
10079, 84, 993eqtrd 2479 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( 1  +  ( A ^ 2 ) ) )
101100fveq2d 5716 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( log `  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )  =  ( log `  ( 1  +  ( A ^ 2 ) ) ) )
10277, 101eqtr3d 2477 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( A ^
2 ) ) ) )
10369, 74, 1023eqtrd 2479 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( log `  (
1  +  ( A ^ 2 ) ) ) )
10436, 66, 1033eqtrd 2479 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  (
_i  x.  (arctan `  A
) ) ) )  =  ( log `  (
1  +  ( A ^ 2 ) ) ) )
105104oveq1d 6127 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) ) )  /  2
)  =  ( ( log `  ( 1  +  ( A ^
2 ) ) )  /  2 ) )
10635, 4subcld 9740 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) )  e.  CC )
10745a1i 11 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  2  =/=  0 )
108106, 29, 107divcan3d 10133 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) ) )  /  2
)  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) ) )
10923, 29, 107divrec2d 10132 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( A ^
2 ) ) )  /  2 )  =  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) )
110105, 108, 1093eqtr3d 2483 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) )  =  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) )
11135, 4, 25subaddd 9758 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A
) ) )  =  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) )  <-> 
( ( _i  x.  (arctan `  A ) )  +  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) )  =  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )
112110, 111mpbid 210 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  (arctan `  A ) )  +  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
113112fveq2d 5716 . . . . 5  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( _i  x.  (arctan `  A ) )  +  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) ) )  =  ( exp `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
11427, 113eqtr3d 2477 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )  =  ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )
11522a1i 11 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  /  2 )  e.  CC )
11612, 16, 115cxpefd 22179 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( A ^ 2 ) )  ^c  ( 1  /  2 ) )  =  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )
117 cxpsqr 22170 . . . . . . 7  |-  ( ( 1  +  ( A ^ 2 ) )  e.  CC  ->  (
( 1  +  ( A ^ 2 ) )  ^c  ( 1  /  2 ) )  =  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )
11812, 117syl 16 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( A ^ 2 ) )  ^c  ( 1  /  2 ) )  =  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )
119116, 118eqtr3d 2477 . . . . 5  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) )  =  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )
120119oveq2d 6128 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )  =  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )
121114, 120, 813eqtr3d 2483 . . 3  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )  =  ( 1  +  ( _i  x.  A ) ) )
122121oveq1d 6127 . 2  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
_i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )  /  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  / 
( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )
12321, 122eqtr3d 2477 1  |-  ( A  e.  dom arctan  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  / 
( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756    =/= wne 2620   dom cdm 4861   ran crn 4862   ` cfv 5439  (class class class)co 6112   CCcc 9301   0cc0 9303   1c1 9304   _ici 9305    + caddc 9306    x. cmul 9308    - cmin 9616   -ucneg 9617    / cdiv 10014   2c2 10392   ^cexp 11886   sqrcsqr 12743   expce 13368   logclog 22028    ^c ccxp 22029  arctancatan 22281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-shft 12577  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185  df-ef 13374  df-sin 13376  df-cos 13377  df-pi 13379  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-lp 18762  df-perf 18763  df-cn 18853  df-cnp 18854  df-haus 18941  df-tx 19157  df-hmeo 19350  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-xms 19917  df-ms 19918  df-tms 19919  df-cncf 20476  df-limc 21363  df-dv 21364  df-log 22030  df-cxp 22031  df-atan 22284
This theorem is referenced by:  cosatan  22338
  Copyright terms: Public domain W3C validator