MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Unicode version

Theorem efiatan2 22271
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2  |-  ( A  e.  dom arctan  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  / 
( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 9337 . . . . 5  |-  _i  e.  CC
2 atancl 22235 . . . . 5  |-  ( A  e.  dom arctan  ->  (arctan `  A )  e.  CC )
3 mulcl 9362 . . . . 5  |-  ( ( _i  e.  CC  /\  (arctan `  A )  e.  CC )  ->  (
_i  x.  (arctan `  A
) )  e.  CC )
41, 2, 3sylancr 658 . . . 4  |-  ( A  e.  dom arctan  ->  ( _i  x.  (arctan `  A
) )  e.  CC )
5 efcl 13364 . . . 4  |-  ( ( _i  x.  (arctan `  A ) )  e.  CC  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  e.  CC )
64, 5syl 16 . . 3  |-  ( A  e.  dom arctan  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  e.  CC )
7 ax-1cn 9336 . . . . 5  |-  1  e.  CC
8 atandm2 22231 . . . . . . 7  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
98simp1bi 998 . . . . . 6  |-  ( A  e.  dom arctan  ->  A  e.  CC )
109sqcld 12002 . . . . 5  |-  ( A  e.  dom arctan  ->  ( A ^ 2 )  e.  CC )
11 addcl 9360 . . . . 5  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  +  ( A ^ 2 ) )  e.  CC )
127, 10, 11sylancr 658 . . . 4  |-  ( A  e.  dom arctan  ->  ( 1  +  ( A ^
2 ) )  e.  CC )
1312sqrcld 12919 . . 3  |-  ( A  e.  dom arctan  ->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  e.  CC )
1412sqsqrd 12921 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( sqr `  ( 1  +  ( A ^
2 ) ) ) ^ 2 )  =  ( 1  +  ( A ^ 2 ) ) )
15 atandm4 22233 . . . . . 6  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  +  ( A ^
2 ) )  =/=  0 ) )
1615simprbi 461 . . . . 5  |-  ( A  e.  dom arctan  ->  ( 1  +  ( A ^
2 ) )  =/=  0 )
1714, 16eqnetrd 2624 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( sqr `  ( 1  +  ( A ^
2 ) ) ) ^ 2 )  =/=  0 )
18 sqne0 11928 . . . . 5  |-  ( ( sqr `  ( 1  +  ( A ^
2 ) ) )  e.  CC  ->  (
( ( sqr `  (
1  +  ( A ^ 2 ) ) ) ^ 2 )  =/=  0  <->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  =/=  0
) )
1913, 18syl 16 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( ( sqr `  (
1  +  ( A ^ 2 ) ) ) ^ 2 )  =/=  0  <->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  =/=  0
) )
2017, 19mpbid 210 . . 3  |-  ( A  e.  dom arctan  ->  ( sqr `  ( 1  +  ( A ^ 2 ) ) )  =/=  0
)
216, 13, 20divcan4d 10109 . 2  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
_i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )  /  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )  =  ( exp `  (
_i  x.  (arctan `  A
) ) ) )
22 halfcn 10537 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
2312, 16logcld 21981 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( A ^ 2 ) ) )  e.  CC )
24 mulcl 9362 . . . . . . 7  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( log `  ( 1  +  ( A ^
2 ) ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) )  e.  CC )
2522, 23, 24sylancr 658 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) )  e.  CC )
26 efadd 13375 . . . . . 6  |-  ( ( ( _i  x.  (arctan `  A ) )  e.  CC  /\  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) )  e.  CC )  ->  ( exp `  (
( _i  x.  (arctan `  A ) )  +  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )  =  ( ( exp `  (
_i  x.  (arctan `  A
) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) ) )
274, 25, 26syl2anc 656 . . . . 5  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( _i  x.  (arctan `  A ) )  +  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) ) )  =  ( ( exp `  ( _i  x.  (arctan `  A ) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) ) )
28 2cn 10388 . . . . . . . . . . . 12  |-  2  e.  CC
2928a1i 11 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  2  e.  CC )
30 mulcl 9362 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
311, 9, 30sylancr 658 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( _i  x.  A )  e.  CC )
32 addcl 9360 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
337, 31, 32sylancr 658 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
348simp3bi 1000 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
3533, 34logcld 21981 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
3629, 35, 4subdid 9796 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  -  (
2  x.  ( _i  x.  (arctan `  A
) ) ) ) )
37 atanval 22238 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
3837oveq2d 6106 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  (arctan `  A
) )  =  ( ( 2  x.  _i )  x.  ( (
_i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) ) )
391a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  _i  e.  CC )
4029, 39, 2mulassd 9405 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  (arctan `  A
) )  =  ( 2  x.  ( _i  x.  (arctan `  A
) ) ) )
41 halfcl 10546 . . . . . . . . . . . . . . . . . 18  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( _i 
/  2 )  e.  CC
4328, 1, 42mulassi 9391 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  _i )  x.  ( _i  / 
2 ) )  =  ( 2  x.  (
_i  x.  ( _i  /  2 ) ) )
4428, 1, 42mul12i 9560 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  ( _i  x.  ( _i  /  2
) ) )  =  ( _i  x.  (
2  x.  ( _i 
/  2 ) ) )
45 2ne0 10410 . . . . . . . . . . . . . . . . . . 19  |-  2  =/=  0
461, 28, 45divcan2i 10070 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  ( _i  / 
2 ) )  =  _i
4746oveq2i 6101 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  ( 2  x.  ( _i  /  2
) ) )  =  ( _i  x.  _i )
48 ixi 9961 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  _i )  = 
-u 1
4947, 48eqtri 2461 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  ( 2  x.  ( _i  /  2
) ) )  = 
-u 1
5043, 44, 493eqtri 2465 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  _i )  x.  ( _i  / 
2 ) )  = 
-u 1
5150oveq1i 6100 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( -u 1  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
52 subcl 9605 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
537, 31, 52sylancr 658 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
548simp2bi 999 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
5553, 54logcld 21981 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
5655, 35subcld 9715 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  CC )
5756mulm1d 9792 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( -u
1  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )  = 
-u ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
5851, 57syl5eq 2485 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  -u ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
59 2mulicn 10544 . . . . . . . . . . . . . . 15  |-  ( 2  x.  _i )  e.  CC
6059a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  e.  CC )
6142a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( _i 
/  2 )  e.  CC )
6260, 61, 56mulassd 9405 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( 2  x.  _i )  x.  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
6355, 35negsubdi2d 9731 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  -u (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )
6458, 62, 633eqtr3d 2481 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
6538, 40, 643eqtr3d 2481 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  x.  (arctan `  A ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
6665oveq2d 6106 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  -  (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
67 mulcl 9362 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )  -> 
( 2  x.  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  e.  CC )
6828, 35, 67sylancr 658 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  CC )
6968, 35, 55subsubd 9743 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )
70352timesd 10563 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( log `  (
1  +  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
7170oveq1d 6105 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
7235, 35pncand 9716 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
7371, 72eqtrd 2473 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
7473oveq1d 6105 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
75 atanlogadd 22268 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
76 logef 21989 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log  ->  ( log `  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
7775, 76syl 16 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( log `  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
78 efadd 13375 . . . . . . . . . . . . . . 15  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  e.  CC  /\  ( log `  ( 1  -  ( _i  x.  A ) ) )  e.  CC )  -> 
( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  x.  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7935, 55, 78syl2anc 656 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  x.  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
80 eflog 21987 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  ->  ( exp `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  =  ( 1  +  ( _i  x.  A
) ) )
8133, 34, 80syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  =  ( 1  +  ( _i  x.  A ) ) )
82 eflog 21987 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0 )  ->  ( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  =  ( 1  -  ( _i  x.  A
) ) )
8353, 54, 82syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( 1  -  ( _i  x.  A ) ) )
8481, 83oveq12d 6108 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  x.  ( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  x.  ( 1  -  ( _i  x.  A
) ) ) )
85 sq1 11956 . . . . . . . . . . . . . . . . 17  |-  ( 1 ^ 2 )  =  1
8685a1i 11 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom arctan  ->  ( 1 ^ 2 )  =  1 )
87 sqmul 11925 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( ( _i  x.  A ) ^ 2 )  =  ( ( _i ^ 2 )  x.  ( A ^
2 ) ) )
881, 9, 87sylancr 658 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  A ) ^ 2 )  =  ( ( _i ^
2 )  x.  ( A ^ 2 ) ) )
89 i2 11962 . . . . . . . . . . . . . . . . . . 19  |-  ( _i
^ 2 )  = 
-u 1
9089oveq1i 6100 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  =  ( -u 1  x.  ( A ^ 2 ) )
9110mulm1d 9792 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  dom arctan  ->  ( -u
1  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
9290, 91syl5eq 2485 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom arctan  ->  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  = 
-u ( A ^
2 ) )
9388, 92eqtrd 2473 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  A ) ^ 2 )  = 
-u ( A ^
2 ) )
9486, 93oveq12d 6108 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( ( 1 ^ 2 )  -  ( ( _i  x.  A ) ^
2 ) )  =  ( 1  -  -u ( A ^ 2 ) ) )
95 subsq 11969 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( ( 1 ^ 2 )  -  ( ( _i  x.  A ) ^ 2 ) )  =  ( ( 1  +  ( _i  x.  A ) )  x.  ( 1  -  ( _i  x.  A ) ) ) )
967, 31, 95sylancr 658 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( ( 1 ^ 2 )  -  ( ( _i  x.  A ) ^
2 ) )  =  ( ( 1  +  ( _i  x.  A
) )  x.  (
1  -  ( _i  x.  A ) ) ) )
97 subneg 9654 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  -u ( A ^ 2 ) )  =  ( 1  +  ( A ^ 2 ) ) )
987, 10, 97sylancr 658 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom arctan  ->  ( 1  -  -u ( A ^
2 ) )  =  ( 1  +  ( A ^ 2 ) ) )
9994, 96, 983eqtr3d 2481 . . . . . . . . . . . . . 14  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( _i  x.  A ) )  x.  ( 1  -  ( _i  x.  A
) ) )  =  ( 1  +  ( A ^ 2 ) ) )
10079, 84, 993eqtrd 2477 . . . . . . . . . . . . 13  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( 1  +  ( A ^ 2 ) ) )
101100fveq2d 5692 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  ->  ( log `  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )  =  ( log `  ( 1  +  ( A ^ 2 ) ) ) )
10277, 101eqtr3d 2475 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( log `  ( 1  +  ( A ^
2 ) ) ) )
10369, 74, 1023eqtrd 2477 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  -  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( log `  (
1  +  ( A ^ 2 ) ) ) )
10436, 66, 1033eqtrd 2477 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  (
_i  x.  (arctan `  A
) ) ) )  =  ( log `  (
1  +  ( A ^ 2 ) ) ) )
105104oveq1d 6105 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) ) )  /  2
)  =  ( ( log `  ( 1  +  ( A ^
2 ) ) )  /  2 ) )
10635, 4subcld 9715 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) )  e.  CC )
10745a1i 11 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  2  =/=  0 )
108106, 29, 107divcan3d 10108 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) ) )  /  2
)  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) ) )
10923, 29, 107divrec2d 10107 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( A ^
2 ) ) )  /  2 )  =  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) )
110105, 108, 1093eqtr3d 2481 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A ) ) )  =  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) )
11135, 4, 25subaddd 9733 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( _i  x.  (arctan `  A
) ) )  =  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) )  <-> 
( ( _i  x.  (arctan `  A ) )  +  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) )  =  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )
112110, 111mpbid 210 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  (arctan `  A ) )  +  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) )  =  ( log `  ( 1  +  ( _i  x.  A ) ) ) )
113112fveq2d 5692 . . . . 5  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( _i  x.  (arctan `  A ) )  +  ( ( 1  /  2 )  x.  ( log `  (
1  +  ( A ^ 2 ) ) ) ) ) )  =  ( exp `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
11427, 113eqtr3d 2475 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )  =  ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )
11522a1i 11 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  /  2 )  e.  CC )
11612, 16, 115cxpefd 22116 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( A ^ 2 ) )  ^c  ( 1  /  2 ) )  =  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )
117 cxpsqr 22107 . . . . . . 7  |-  ( ( 1  +  ( A ^ 2 ) )  e.  CC  ->  (
( 1  +  ( A ^ 2 ) )  ^c  ( 1  /  2 ) )  =  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )
11812, 117syl 16 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( A ^ 2 ) )  ^c  ( 1  /  2 ) )  =  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )
119116, 118eqtr3d 2475 . . . . 5  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( 1  / 
2 )  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) )  =  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )
120119oveq2d 6106 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  ( 1  +  ( A ^ 2 ) ) ) ) ) )  =  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )
121114, 120, 813eqtr3d 2481 . . 3  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( _i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )  =  ( 1  +  ( _i  x.  A ) ) )
122121oveq1d 6105 . 2  |-  ( A  e.  dom arctan  ->  ( ( ( exp `  (
_i  x.  (arctan `  A
) ) )  x.  ( sqr `  (
1  +  ( A ^ 2 ) ) ) )  /  ( sqr `  ( 1  +  ( A ^ 2 ) ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  / 
( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )
12321, 122eqtr3d 2475 1  |-  ( A  e.  dom arctan  ->  ( exp `  ( _i  x.  (arctan `  A ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  / 
( sqr `  (
1  +  ( A ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1364    e. wcel 1761    =/= wne 2604   dom cdm 4836   ran crn 4837   ` cfv 5415  (class class class)co 6090   CCcc 9276   0cc0 9278   1c1 9279   _ici 9280    + caddc 9281    x. cmul 9283    - cmin 9591   -ucneg 9592    / cdiv 9989   2c2 10367   ^cexp 11861   sqrcsqr 12718   expce 13343   logclog 21965    ^c ccxp 21966  arctancatan 22218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967  df-cxp 21968  df-atan 22221
This theorem is referenced by:  cosatan  22275
  Copyright terms: Public domain W3C validator