Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Structured version   Visualization version   GIF version

Theorem aaliou3lem9 23909
 Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem9 ¬ 𝐿 ∈ 𝔸
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)

Proof of Theorem aaliou3lem9
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 23904 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑒 ∈ ℕ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
2 aaliou3lem.c . . . . . . . . 9 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
3 aaliou3lem.d . . . . . . . . 9 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4 aaliou3lem.e . . . . . . . . 9 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
52, 3, 4aaliou3lem6 23907 . . . . . . . 8 (𝑒 ∈ ℕ → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
65ad2antrl 760 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
7 2nn 11062 . . . . . . . 8 2 ∈ ℕ
8 nnnn0 11176 . . . . . . . . . 10 (𝑒 ∈ ℕ → 𝑒 ∈ ℕ0)
98ad2antrl 760 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑒 ∈ ℕ0)
10 faccl 12932 . . . . . . . . 9 (𝑒 ∈ ℕ0 → (!‘𝑒) ∈ ℕ)
11 nnnn0 11176 . . . . . . . . 9 ((!‘𝑒) ∈ ℕ → (!‘𝑒) ∈ ℕ0)
129, 10, 113syl 18 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘𝑒) ∈ ℕ0)
13 nnexpcl 12735 . . . . . . . 8 ((2 ∈ ℕ ∧ (!‘𝑒) ∈ ℕ0) → (2↑(!‘𝑒)) ∈ ℕ)
147, 12, 13sylancr 694 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℕ)
152, 3, 4aaliou3lem5 23906 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ → (𝐻𝑒) ∈ ℝ)
1615ad2antrl 760 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℝ)
1716recnd 9947 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℂ)
1814nncnd 10913 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℂ)
1914nnne0d 10942 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ≠ 0)
2017, 18, 19divcan4d 10686 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) = (𝐻𝑒))
212, 3, 4aaliou3lem7 23908 . . . . . . . . . . . 12 (𝑒 ∈ ℕ → ((𝐻𝑒) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1))))))
2221simpld 474 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (𝐻𝑒) ≠ 𝐿)
2322ad2antrl 760 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ≠ 𝐿)
2420, 23eqnetrd 2849 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ≠ 𝐿)
2524necomd 2837 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝐿 ≠ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
2625neneqd 2787 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
272, 3, 4aaliou3lem4 23905 . . . . . . . . . . . 12 𝐿 ∈ ℝ
2814nnred 10912 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℝ)
2916, 28remulcld 9949 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℝ)
3029, 14nndivred 10946 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ)
31 resubcl 10224 . . . . . . . . . . . 12 ((𝐿 ∈ ℝ ∧ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3227, 30, 31sylancr 694 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3332recnd 9947 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℂ)
3433abscld 14023 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ∈ ℝ)
35 2rp 11713 . . . . . . . . . . 11 2 ∈ ℝ+
36 peano2nn0 11210 . . . . . . . . . . . . . 14 (𝑒 ∈ ℕ0 → (𝑒 + 1) ∈ ℕ0)
37 faccl 12932 . . . . . . . . . . . . . 14 ((𝑒 + 1) ∈ ℕ0 → (!‘(𝑒 + 1)) ∈ ℕ)
389, 36, 373syl 18 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘(𝑒 + 1)) ∈ ℕ)
39 nnz 11276 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℕ → (!‘(𝑒 + 1)) ∈ ℤ)
40 znegcl 11289 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℤ → -(!‘(𝑒 + 1)) ∈ ℤ)
4138, 39, 403syl 18 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → -(!‘(𝑒 + 1)) ∈ ℤ)
42 rpexpcl 12741 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝑒 + 1)) ∈ ℤ) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
4335, 41, 42sylancr 694 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
44 rpmulcl 11731 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝑒 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
4535, 43, 44sylancr 694 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
4645rpred 11748 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ)
47 simplr 788 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑏 ∈ ℝ+)
48 nnnn0 11176 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
4948ad2antrr 758 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑎 ∈ ℕ0)
5014, 49nnexpcld 12892 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℕ)
5150nnrpd 11746 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℝ+)
5247, 51rpdivcld 11765 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ+)
5352rpred 11748 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ)
5420oveq2d 6565 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) = (𝐿 − (𝐻𝑒)))
5554fveq2d 6107 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) = (abs‘(𝐿 − (𝐻𝑒))))
5621simprd 478 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5756ad2antrl 760 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5855, 57eqbrtrd 4605 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
59 simprr 792 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6034, 46, 53, 58, 59letrd 10073 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6134, 53lenltd 10062 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ↔ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
6260, 61mpbid 221 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
63 oveq1 6556 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝑓 / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))
6463eqeq2d 2620 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 = (𝑓 / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6564notbid 307 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ 𝐿 = (𝑓 / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6663oveq2d 6565 . . . . . . . . . . . 12 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 − (𝑓 / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6766fveq2d 6107 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (abs‘(𝐿 − (𝑓 / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))
6867breq2d 4595 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6968notbid 307 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
7065, 69anbi12d 743 . . . . . . . 8 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))))
71 oveq2 6557 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
7271eqeq2d 2620 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → (𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7372notbid 307 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
74 oveq1 6556 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝑑𝑎) = ((2↑(!‘𝑒))↑𝑎))
7574oveq2d 6565 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (𝑏 / (𝑑𝑎)) = (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
7671oveq2d 6565 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7776fveq2d 6107 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
7875, 77breq12d 4596 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7978notbid 307 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
8073, 79anbi12d 743 . . . . . . . 8 (𝑑 = (2↑(!‘𝑒)) → ((¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))))
8170, 80rspc2ev 3295 . . . . . . 7 ((((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ ∧ (2↑(!‘𝑒)) ∈ ℕ ∧ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
826, 14, 26, 62, 81syl112anc 1322 . . . . . 6 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
831, 82rexlimddv 3017 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
84 pm4.56 515 . . . . . . . . 9 ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8584rexbii 3023 . . . . . . . 8 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
86 rexnal 2978 . . . . . . . 8 (∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8785, 86bitri 263 . . . . . . 7 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8887rexbii 3023 . . . . . 6 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
89 rexnal 2978 . . . . . 6 (∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9088, 89bitri 263 . . . . 5 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9183, 90sylib 207 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9291nrexdv 2984 . . 3 (𝑎 ∈ ℕ → ¬ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9392nrex 2983 . 2 ¬ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))))
94 aaliou2b 23900 . 2 (𝐿 ∈ 𝔸 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9593, 94mto 187 1 ¬ 𝐿 ∈ 𝔸
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℝ+crp 11708  ...cfz 12197  ↑cexp 12722  !cfa 12922  abscabs 13822  Σcsu 14264  𝔸caa 23873 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-dvn 23438  df-cpn 23439  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-quot 23850  df-aa 23874 This theorem is referenced by:  aaliou3  23910
 Copyright terms: Public domain W3C validator