MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Structured version   Visualization version   Unicode version

Theorem aaliou3lem9 23306
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem9  |-  -.  L  e.  AA
Distinct variable groups:    a, b,
c    F, b, c    L, c, a, b
Allowed substitution hints:    F( a)    H( a, b, c)

Proof of Theorem aaliou3lem9
Dummy variables  d 
e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 23301 . . . . . 6  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  E. e  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) )
2 aaliou3lem.c . . . . . . . . 9  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
3 aaliou3lem.d . . . . . . . . 9  |-  L  = 
sum_ b  e.  NN  ( F `  b )
4 aaliou3lem.e . . . . . . . . 9  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
52, 3, 4aaliou3lem6 23304 . . . . . . . 8  |-  ( e  e.  NN  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  ZZ )
65ad2antrl 734 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  ZZ )
7 2nn 10767 . . . . . . . 8  |-  2  e.  NN
8 nnnn0 10876 . . . . . . . . . 10  |-  ( e  e.  NN  ->  e  e.  NN0 )
98ad2antrl 734 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  e  e.  NN0 )
10 faccl 12469 . . . . . . . . 9  |-  ( e  e.  NN0  ->  ( ! `
 e )  e.  NN )
11 nnnn0 10876 . . . . . . . . 9  |-  ( ( ! `  e )  e.  NN  ->  ( ! `  e )  e.  NN0 )
129, 10, 113syl 18 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( ! `  e )  e.  NN0 )
13 nnexpcl 12285 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  ( ! `  e )  e.  NN0 )  -> 
( 2 ^ ( ! `  e )
)  e.  NN )
147, 12, 13sylancr 669 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  NN )
152, 3, 4aaliou3lem5 23303 . . . . . . . . . . . . 13  |-  ( e  e.  NN  ->  ( H `  e )  e.  RR )
1615ad2antrl 734 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  e.  RR )
1716recnd 9669 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  e.  CC )
1814nncnd 10625 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  CC )
1914nnne0d 10654 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  =/=  0 )
2017, 18, 19divcan4d 10389 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  =  ( H `  e ) )
212, 3, 4aaliou3lem7 23305 . . . . . . . . . . . 12  |-  ( e  e.  NN  ->  (
( H `  e
)  =/=  L  /\  ( abs `  ( L  -  ( H `  e ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( e  +  1 ) ) ) ) ) )
2221simpld 461 . . . . . . . . . . 11  |-  ( e  e.  NN  ->  ( H `  e )  =/=  L )
2322ad2antrl 734 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  =/=  L )
2420, 23eqnetrd 2691 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  =/=  L )
2524necomd 2679 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  L  =/=  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) )
2625neneqd 2629 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )
272, 3, 4aaliou3lem4 23302 . . . . . . . . . . . 12  |-  L  e.  RR
2814nnred 10624 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  RR )
2916, 28remulcld 9671 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  RR )
3029, 14nndivred 10658 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  e.  RR )
31 resubcl 9938 . . . . . . . . . . . 12  |-  ( ( L  e.  RR  /\  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) )  e.  RR )  ->  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) )  e.  RR )
3227, 30, 31sylancr 669 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  e.  RR )
3332recnd 9669 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  e.  CC )
3433abscld 13498 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  e.  RR )
35 2rp 11307 . . . . . . . . . . 11  |-  2  e.  RR+
36 peano2nn0 10910 . . . . . . . . . . . . . 14  |-  ( e  e.  NN0  ->  ( e  +  1 )  e. 
NN0 )
37 faccl 12469 . . . . . . . . . . . . . 14  |-  ( ( e  +  1 )  e.  NN0  ->  ( ! `
 ( e  +  1 ) )  e.  NN )
389, 36, 373syl 18 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( ! `  ( e  +  1 ) )  e.  NN )
39 nnz 10959 . . . . . . . . . . . . 13  |-  ( ( ! `  ( e  +  1 ) )  e.  NN  ->  ( ! `  ( e  +  1 ) )  e.  ZZ )
40 znegcl 10972 . . . . . . . . . . . . 13  |-  ( ( ! `  ( e  +  1 ) )  e.  ZZ  ->  -u ( ! `  ( e  +  1 ) )  e.  ZZ )
4138, 39, 403syl 18 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -u ( ! `  ( e  +  1 ) )  e.  ZZ )
42 rpexpcl 12291 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  -u ( ! `  ( e  +  1 ) )  e.  ZZ )  -> 
( 2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )
4335, 41, 42sylancr 669 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )
44 rpmulcl 11324 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )  ->  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  e.  RR+ )
4535, 43, 44sylancr 669 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  e.  RR+ )
4645rpred 11341 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  e.  RR )
47 simplr 762 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  b  e.  RR+ )
48 nnnn0 10876 . . . . . . . . . . . . . 14  |-  ( a  e.  NN  ->  a  e.  NN0 )
4948ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  a  e.  NN0 )
5014, 49nnexpcld 12437 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( 2 ^ ( ! `  e )
) ^ a )  e.  NN )
5150nnrpd 11339 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( 2 ^ ( ! `  e )
) ^ a )  e.  RR+ )
5247, 51rpdivcld 11358 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  e.  RR+ )
5352rpred 11341 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  e.  RR )
5420oveq2d 6306 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  =  ( L  -  ( H `  e ) ) )
5554fveq2d 5869 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  =  ( abs `  ( L  -  ( H `  e ) ) ) )
5621simprd 465 . . . . . . . . . . 11  |-  ( e  e.  NN  ->  ( abs `  ( L  -  ( H `  e ) ) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) ) )
5756ad2antrl 734 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( H `  e ) ) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) ) )
5855, 57eqbrtrd 4423 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) ) )
59 simprr 766 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  <_  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) ) )
6034, 46, 53, 58, 59letrd 9792 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  <_ 
( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) ) )
6134, 53lenltd 9781 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) )  <_  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) )  <->  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
6260, 61mpbid 214 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -.  ( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) ) )
63 oveq1 6297 . . . . . . . . . . 11  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
f  /  d )  =  ( ( ( H `  e )  x.  ( 2 ^ ( ! `  e
) ) )  / 
d ) )
6463eqeq2d 2461 . . . . . . . . . 10  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( L  =  ( f  /  d )  <->  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )
6564notbid 296 . . . . . . . . 9  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( -.  L  =  (
f  /  d )  <->  -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )
6663oveq2d 6306 . . . . . . . . . . . 12  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( L  -  ( f  /  d ) )  =  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )
6766fveq2d 5869 . . . . . . . . . . 11  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( abs `  ( L  -  ( f  /  d
) ) )  =  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) )
6867breq2d 4414 . . . . . . . . . 10  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) )  <->  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) ) )
6968notbid 296 . . . . . . . . 9  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) )  <->  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) ) )
7065, 69anbi12d 717 . . . . . . . 8  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
( -.  L  =  ( f  /  d
)  /\  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( f  /  d ) ) ) )  <->  ( -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d )  /\  -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) ) ) ) )
71 oveq2 6298 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d )  =  ( ( ( H `  e )  x.  ( 2 ^ ( ! `  e
) ) )  / 
( 2 ^ ( ! `  e )
) ) )
7271eqeq2d 2461 . . . . . . . . . 10  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d )  <->  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )
7372notbid 296 . . . . . . . . 9  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d )  <->  -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) )
74 oveq1 6297 . . . . . . . . . . . 12  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
d ^ a )  =  ( ( 2 ^ ( ! `  e ) ) ^
a ) )
7574oveq2d 6306 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
b  /  ( d ^ a ) )  =  ( b  / 
( ( 2 ^ ( ! `  e
) ) ^ a
) ) )
7671oveq2d 6306 . . . . . . . . . . . 12  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) )  =  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )
7776fveq2d 5869 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )  =  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) )
7875, 77breq12d 4415 . . . . . . . . . 10  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )  <->  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) )  < 
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
7978notbid 296 . . . . . . . . 9  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )  <->  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
8073, 79anbi12d 717 . . . . . . . 8  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( -.  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
)  /\  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) )  <->  ( -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) )  /\  -.  ( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) ) ) ) )
8170, 80rspc2ev 3161 . . . . . . 7  |-  ( ( ( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  e.  ZZ  /\  ( 2 ^ ( ! `  e )
)  e.  NN  /\  ( -.  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) )  /\  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
826, 14, 26, 62, 81syl112anc 1272 . . . . . 6  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  ( f  / 
d )  /\  -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
831, 82rexlimddv 2883 . . . . 5  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
84 pm4.56 498 . . . . . . . . 9  |-  ( ( -.  L  =  ( f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
8584rexbii 2889 . . . . . . . 8  |-  ( E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  E. d  e.  NN  -.  ( L  =  ( f  / 
d )  \/  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( f  /  d ) ) ) ) )
86 rexnal 2836 . . . . . . . 8  |-  ( E. d  e.  NN  -.  ( L  =  (
f  /  d )  \/  ( b  / 
( d ^ a
) )  <  ( abs `  ( L  -  ( f  /  d
) ) ) )  <->  -.  A. d  e.  NN  ( L  =  (
f  /  d )  \/  ( b  / 
( d ^ a
) )  <  ( abs `  ( L  -  ( f  /  d
) ) ) ) )
8785, 86bitri 253 . . . . . . 7  |-  ( E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
8887rexbii 2889 . . . . . 6  |-  ( E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  E. f  e.  ZZ  -.  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
89 rexnal 2836 . . . . . 6  |-  ( E. f  e.  ZZ  -.  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) )  <->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9088, 89bitri 253 . . . . 5  |-  ( E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9183, 90sylib 200 . . . 4  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
9291nrexdv 2843 . . 3  |-  ( a  e.  NN  ->  -.  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9392nrex 2842 . 2  |-  -.  E. a  e.  NN  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )
94 aaliou2b 23297 . 2  |-  ( L  e.  AA  ->  E. a  e.  NN  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
9593, 94mto 180 1  |-  -.  L  e.  AA
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 370    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   class class class wbr 4402    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290   RRcr 9538   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860   -ucneg 9861    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   RR+crp 11302   ...cfz 11784   ^cexp 12272   !cfa 12459   abscabs 13297   sum_csu 13752   AAcaa 23267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-fac 12460  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-mulg 16676  df-subg 16814  df-cntz 16971  df-cmn 17432  df-mgp 17724  df-ur 17736  df-ring 17782  df-cring 17783  df-subrg 18006  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-0p 22628  df-limc 22821  df-dv 22822  df-dvn 22823  df-cpn 22824  df-ply 23142  df-idp 23143  df-coe 23144  df-dgr 23145  df-quot 23244  df-aa 23268
This theorem is referenced by:  aaliou3  23307
  Copyright terms: Public domain W3C validator