MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Unicode version

Theorem aaliou3lem9 20220
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem9  |-  -.  L  e.  AA
Distinct variable groups:    a, b,
c    F, b, c    L, c, a, b
Allowed substitution hints:    F( a)    H( a, b, c)

Proof of Theorem aaliou3lem9
Dummy variables  d 
e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 20215 . . . . . 6  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  E. e  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) )
2 aaliou3lem.c . . . . . . . . 9  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
3 aaliou3lem.d . . . . . . . . 9  |-  L  = 
sum_ b  e.  NN  ( F `  b )
4 aaliou3lem.e . . . . . . . . 9  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
52, 3, 4aaliou3lem6 20218 . . . . . . . 8  |-  ( e  e.  NN  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  ZZ )
65ad2antrl 709 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  ZZ )
7 2nn 10089 . . . . . . . 8  |-  2  e.  NN
8 nnnn0 10184 . . . . . . . . . 10  |-  ( e  e.  NN  ->  e  e.  NN0 )
98ad2antrl 709 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  e  e.  NN0 )
10 faccl 11531 . . . . . . . . 9  |-  ( e  e.  NN0  ->  ( ! `
 e )  e.  NN )
11 nnnn0 10184 . . . . . . . . 9  |-  ( ( ! `  e )  e.  NN  ->  ( ! `  e )  e.  NN0 )
129, 10, 113syl 19 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( ! `  e )  e.  NN0 )
13 nnexpcl 11349 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  ( ! `  e )  e.  NN0 )  -> 
( 2 ^ ( ! `  e )
)  e.  NN )
147, 12, 13sylancr 645 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  NN )
152, 3, 4aaliou3lem5 20217 . . . . . . . . . . . . 13  |-  ( e  e.  NN  ->  ( H `  e )  e.  RR )
1615ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  e.  RR )
1716recnd 9070 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  e.  CC )
1814nncnd 9972 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  CC )
1914nnne0d 10000 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  =/=  0 )
2017, 18, 19divcan4d 9752 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  =  ( H `  e ) )
212, 3, 4aaliou3lem7 20219 . . . . . . . . . . . 12  |-  ( e  e.  NN  ->  (
( H `  e
)  =/=  L  /\  ( abs `  ( L  -  ( H `  e ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( e  +  1 ) ) ) ) ) )
2221simpld 446 . . . . . . . . . . 11  |-  ( e  e.  NN  ->  ( H `  e )  =/=  L )
2322ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  =/=  L )
2420, 23eqnetrd 2585 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  =/=  L )
2524necomd 2650 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  L  =/=  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) )
2625neneqd 2583 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )
272, 3, 4aaliou3lem4 20216 . . . . . . . . . . . 12  |-  L  e.  RR
2814nnred 9971 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  RR )
2916, 28remulcld 9072 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  RR )
3029, 14nndivred 10004 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  e.  RR )
31 resubcl 9321 . . . . . . . . . . . 12  |-  ( ( L  e.  RR  /\  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) )  e.  RR )  ->  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) )  e.  RR )
3227, 30, 31sylancr 645 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  e.  RR )
3332recnd 9070 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  e.  CC )
3433abscld 12193 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  e.  RR )
35 2rp 10573 . . . . . . . . . . 11  |-  2  e.  RR+
36 peano2nn0 10216 . . . . . . . . . . . . . 14  |-  ( e  e.  NN0  ->  ( e  +  1 )  e. 
NN0 )
37 faccl 11531 . . . . . . . . . . . . . 14  |-  ( ( e  +  1 )  e.  NN0  ->  ( ! `
 ( e  +  1 ) )  e.  NN )
389, 36, 373syl 19 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( ! `  ( e  +  1 ) )  e.  NN )
39 nnz 10259 . . . . . . . . . . . . 13  |-  ( ( ! `  ( e  +  1 ) )  e.  NN  ->  ( ! `  ( e  +  1 ) )  e.  ZZ )
40 znegcl 10269 . . . . . . . . . . . . 13  |-  ( ( ! `  ( e  +  1 ) )  e.  ZZ  ->  -u ( ! `  ( e  +  1 ) )  e.  ZZ )
4138, 39, 403syl 19 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -u ( ! `  ( e  +  1 ) )  e.  ZZ )
42 rpexpcl 11355 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  -u ( ! `  ( e  +  1 ) )  e.  ZZ )  -> 
( 2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )
4335, 41, 42sylancr 645 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )
44 rpmulcl 10589 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )  ->  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  e.  RR+ )
4535, 43, 44sylancr 645 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  e.  RR+ )
4645rpred 10604 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  e.  RR )
47 simplr 732 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  b  e.  RR+ )
48 nnnn0 10184 . . . . . . . . . . . . . 14  |-  ( a  e.  NN  ->  a  e.  NN0 )
4948ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  a  e.  NN0 )
5014, 49nnexpcld 11499 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( 2 ^ ( ! `  e )
) ^ a )  e.  NN )
5150nnrpd 10603 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( 2 ^ ( ! `  e )
) ^ a )  e.  RR+ )
5247, 51rpdivcld 10621 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  e.  RR+ )
5352rpred 10604 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  e.  RR )
5420oveq2d 6056 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  =  ( L  -  ( H `  e ) ) )
5554fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  =  ( abs `  ( L  -  ( H `  e ) ) ) )
5621simprd 450 . . . . . . . . . . 11  |-  ( e  e.  NN  ->  ( abs `  ( L  -  ( H `  e ) ) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) ) )
5756ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( H `  e ) ) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) ) )
5855, 57eqbrtrd 4192 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) ) )
59 simprr 734 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  <_  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) ) )
6034, 46, 53, 58, 59letrd 9183 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  <_ 
( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) ) )
6134, 53lenltd 9175 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) )  <_  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) )  <->  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
6260, 61mpbid 202 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -.  ( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) ) )
63 oveq1 6047 . . . . . . . . . . 11  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
f  /  d )  =  ( ( ( H `  e )  x.  ( 2 ^ ( ! `  e
) ) )  / 
d ) )
6463eqeq2d 2415 . . . . . . . . . 10  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( L  =  ( f  /  d )  <->  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )
6564notbid 286 . . . . . . . . 9  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( -.  L  =  (
f  /  d )  <->  -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )
6663oveq2d 6056 . . . . . . . . . . . 12  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( L  -  ( f  /  d ) )  =  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )
6766fveq2d 5691 . . . . . . . . . . 11  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( abs `  ( L  -  ( f  /  d
) ) )  =  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) )
6867breq2d 4184 . . . . . . . . . 10  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) )  <->  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) ) )
6968notbid 286 . . . . . . . . 9  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) )  <->  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) ) )
7065, 69anbi12d 692 . . . . . . . 8  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
( -.  L  =  ( f  /  d
)  /\  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( f  /  d ) ) ) )  <->  ( -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d )  /\  -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) ) ) ) )
71 oveq2 6048 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d )  =  ( ( ( H `  e )  x.  ( 2 ^ ( ! `  e
) ) )  / 
( 2 ^ ( ! `  e )
) ) )
7271eqeq2d 2415 . . . . . . . . . 10  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d )  <->  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )
7372notbid 286 . . . . . . . . 9  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d )  <->  -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) )
74 oveq1 6047 . . . . . . . . . . . 12  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
d ^ a )  =  ( ( 2 ^ ( ! `  e ) ) ^
a ) )
7574oveq2d 6056 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
b  /  ( d ^ a ) )  =  ( b  / 
( ( 2 ^ ( ! `  e
) ) ^ a
) ) )
7671oveq2d 6056 . . . . . . . . . . . 12  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) )  =  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )
7776fveq2d 5691 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )  =  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) )
7875, 77breq12d 4185 . . . . . . . . . 10  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )  <->  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) )  < 
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
7978notbid 286 . . . . . . . . 9  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )  <->  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
8073, 79anbi12d 692 . . . . . . . 8  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( -.  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
)  /\  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) )  <->  ( -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) )  /\  -.  ( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) ) ) ) )
8170, 80rspc2ev 3020 . . . . . . 7  |-  ( ( ( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  e.  ZZ  /\  ( 2 ^ ( ! `  e )
)  e.  NN  /\  ( -.  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) )  /\  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
826, 14, 26, 62, 81syl112anc 1188 . . . . . 6  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  ( f  / 
d )  /\  -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
831, 82rexlimddv 2794 . . . . 5  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
84 pm4.56 482 . . . . . . . . 9  |-  ( ( -.  L  =  ( f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
8584rexbii 2691 . . . . . . . 8  |-  ( E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  E. d  e.  NN  -.  ( L  =  ( f  / 
d )  \/  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( f  /  d ) ) ) ) )
86 rexnal 2677 . . . . . . . 8  |-  ( E. d  e.  NN  -.  ( L  =  (
f  /  d )  \/  ( b  / 
( d ^ a
) )  <  ( abs `  ( L  -  ( f  /  d
) ) ) )  <->  -.  A. d  e.  NN  ( L  =  (
f  /  d )  \/  ( b  / 
( d ^ a
) )  <  ( abs `  ( L  -  ( f  /  d
) ) ) ) )
8785, 86bitri 241 . . . . . . 7  |-  ( E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
8887rexbii 2691 . . . . . 6  |-  ( E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  E. f  e.  ZZ  -.  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
89 rexnal 2677 . . . . . 6  |-  ( E. f  e.  ZZ  -.  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) )  <->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9088, 89bitri 241 . . . . 5  |-  ( E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9183, 90sylib 189 . . . 4  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
9291nrexdv 2769 . . 3  |-  ( a  e.  NN  ->  -.  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9392nrex 2768 . 2  |-  -.  E. a  e.  NN  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )
94 aaliou2b 20211 . 2  |-  ( L  e.  AA  ->  E. a  e.  NN  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
9593, 94mto 169 1  |-  -.  L  e.  AA
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   RRcr 8945   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   RR+crp 10568   ...cfz 10999   ^cexp 11337   !cfa 11521   abscabs 11994   sum_csu 12434   AAcaa 20184
This theorem is referenced by:  aaliou3  20221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-fac 11522  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-mulg 14770  df-subg 14896  df-cntz 15071  df-cmn 15369  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-subrg 15821  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-0p 19515  df-limc 19706  df-dv 19707  df-dvn 19708  df-cpn 19709  df-ply 20060  df-idp 20061  df-coe 20062  df-dgr 20063  df-quot 20161  df-aa 20185
  Copyright terms: Public domain W3C validator