MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Visualization version   GIF version

Theorem aaliou3lem8 23904
Description: Lemma for aaliou3 23910. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem aaliou3lem8
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2rp 11713 . . . . . 6 2 ∈ ℝ+
2 rpdivcl 11732 . . . . . 6 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ+)
31, 2mpan 702 . . . . 5 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ+)
43rpred 11748 . . . 4 (𝐵 ∈ ℝ+ → (2 / 𝐵) ∈ ℝ)
5 2re 10967 . . . . 5 2 ∈ ℝ
6 1lt2 11071 . . . . 5 1 < 2
7 expnbnd 12855 . . . . 5 (((2 / 𝐵) ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
85, 6, 7mp3an23 1408 . . . 4 ((2 / 𝐵) ∈ ℝ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
94, 8syl 17 . . 3 (𝐵 ∈ ℝ+ → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
109adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ (2 / 𝐵) < (2↑𝑎))
11 simprl 790 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ)
12 simpll 786 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ)
13 nnaddm1cl 11311 . . . 4 ((𝑎 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
1411, 12, 13syl2anc 691 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ)
15 simplr 788 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℝ+)
16 rerpdivcl 11737 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (2 / 𝐵) ∈ ℝ)
175, 15, 16sylancr 694 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ∈ ℝ)
1811nnnn0d 11228 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℕ0)
19 reexpcl 12739 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑎 ∈ ℕ0) → (2↑𝑎) ∈ ℝ)
205, 18, 19sylancr 694 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ∈ ℝ)
2111, 12nnaddcld 10944 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℕ)
22 nnm1nn0 11211 . . . . . . . . . . . . . . . 16 ((𝑎 + 𝐴) ∈ ℕ → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 1) ∈ ℕ0)
24 peano2nn0 11210 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
2523, 24syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0)
26 faccl 12932 . . . . . . . . . . . . . 14 ((((𝑎 + 𝐴) − 1) + 1) ∈ ℕ0 → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ)
2725, 26syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ)
2827nnzd 11357 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ)
29 faccl 12932 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ)
3023, 29syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ)
3130nnzd 11357 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ)
3212nnzd 11357 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℤ)
3331, 32zmulcld 11364 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)
3428, 33zsubcld 11363 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ)
35 rpexpcl 12741 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
361, 34, 35sylancr 694 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ+)
3736rpred 11748 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) ∈ ℝ)
38 simprr 792 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) < (2↑𝑎))
3917, 20, 38ltled 10064 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑𝑎))
405a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℝ)
41 1le2 11118 . . . . . . . . . . 11 1 ≤ 2
4241a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ 2)
4311nnred 10912 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℝ)
4430nnred 10912 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℝ)
4518nn0ge0d 11231 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 0 ≤ 𝑎)
4630nnge1d 10940 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ≤ (!‘((𝑎 + 𝐴) − 1)))
4743, 44, 45, 46lemulge12d 10841 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
48 facp1 12927 . . . . . . . . . . . . . . 15 (((𝑎 + 𝐴) − 1) ∈ ℕ0 → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
4923, 48syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) = ((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)))
5049oveq1d 6564 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
5130nncnd 10913 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℂ)
5225nn0cnd 11230 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) ∈ ℂ)
5312nncnd 10913 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℂ)
5451, 52, 53subdid 10365 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = (((!‘((𝑎 + 𝐴) − 1)) · (((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
5521nncnd 10913 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝑎 + 𝐴) ∈ ℂ)
56 1cnd 9935 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 1 ∈ ℂ)
5755, 56npcand 10275 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((𝑎 + 𝐴) − 1) + 1) = (𝑎 + 𝐴))
5857oveq1d 6564 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((((𝑎 + 𝐴) − 1) + 1) − 𝐴) = ((𝑎 + 𝐴) − 𝐴))
5911nncnd 10913 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℂ)
6059, 53pncand 10272 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((𝑎 + 𝐴) − 𝐴) = 𝑎)
6158, 60eqtrd 2644 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((((𝑎 + 𝐴) − 1) + 1) − 𝐴) = 𝑎)
6261oveq2d 6565 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘((𝑎 + 𝐴) − 1)) · ((((𝑎 + 𝐴) − 1) + 1) − 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
6350, 54, 623eqtr2d 2650 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((!‘((𝑎 + 𝐴) − 1)) · 𝑎))
6447, 63breqtrrd 4611 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)))
6511nnzd 11357 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝑎 ∈ ℤ)
66 eluz 11577 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ ℤ) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6765, 34, 66syl2anc 691 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎) ↔ 𝑎 ≤ ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
6864, 67mpbird 246 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) ∈ (ℤ𝑎))
6940, 42, 68leexp2ad 12903 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑𝑎) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
7017, 20, 37, 39, 69letrd 10073 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
71 rpcnne0 11726 . . . . . . . . . . 11 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
721, 71mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 ∈ ℂ ∧ 2 ≠ 0))
73 expsub 12770 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ ∧ ((!‘((𝑎 + 𝐴) − 1)) · 𝐴) ∈ ℤ)) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
7472, 28, 33, 73syl12anc 1316 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
75 2cn 10968 . . . . . . . . . . . 12 2 ∈ ℂ
7675a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ∈ ℂ)
7712nnnn0d 11228 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐴 ∈ ℕ0)
7830nnnn0d 11228 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘((𝑎 + 𝐴) − 1)) ∈ ℕ0)
7976, 77, 78expmuld 12873 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴)) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
8079oveq2d 6565 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / (2↑((!‘((𝑎 + 𝐴) − 1)) · 𝐴))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
81 rpexpcl 12741 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℤ) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
821, 28, 81sylancr 694 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℝ+)
8382rpcnd 11750 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ∈ ℂ)
84 rpexpcl 12741 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ (!‘((𝑎 + 𝐴) − 1)) ∈ ℤ) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
851, 31, 84sylancr 694 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘((𝑎 + 𝐴) − 1))) ∈ ℝ+)
8685, 32rpexpcld 12894 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℝ+)
8786rpcnd 11750 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ∈ ℂ)
8886rpne0d 11753 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴) ≠ 0)
8983, 87, 88divrecd 10683 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
9074, 80, 893eqtrrd 2649 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) = (2↑((!‘(((𝑎 + 𝐴) − 1) + 1)) − ((!‘((𝑎 + 𝐴) − 1)) · 𝐴))))
9170, 90breqtrrd 4611 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
9286rpreccld 11758 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℝ+)
9382, 92rpmulcld 11764 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
9493rpred 11748 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
9540, 94, 15ledivmuld 11801 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / 𝐵) ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
9691, 95mpbid 221 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
9715rpcnd 11750 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 𝐵 ∈ ℂ)
9892rpcnd 11750 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) ∈ ℂ)
9997, 83, 98mul12d 10124 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))) = ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
10096, 99breqtrd 4609 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))))
10115, 92rpmulcld 11764 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ+)
102101rpred 11748 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ∈ ℝ)
10340, 102, 82ledivmuld 11801 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ((2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) ↔ 2 ≤ ((2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) · (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))))
104100, 103mpbird 246 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
10527nnnn0d 11228 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0)
106 expneg 12730 . . . . . . 7 ((2 ∈ ℂ ∧ (!‘(((𝑎 + 𝐴) − 1) + 1)) ∈ ℕ0) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
10775, 105, 106sylancr 694 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))) = (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
108107oveq2d 6565 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
10982rpne0d 11753 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))) ≠ 0)
11076, 83, 109divrecd 10683 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 · (1 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1))))))
111108, 110eqtr4d 2647 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) = (2 / (2↑(!‘(((𝑎 + 𝐴) − 1) + 1)))))
11297, 87, 88divrecd 10683 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)) = (𝐵 · (1 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
113104, 111, 1123brtr4d 4615 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
114 oveq1 6556 . . . . . . . . 9 (𝑥 = ((𝑎 + 𝐴) − 1) → (𝑥 + 1) = (((𝑎 + 𝐴) − 1) + 1))
115114fveq2d 6107 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘(𝑥 + 1)) = (!‘(((𝑎 + 𝐴) − 1) + 1)))
116115negeqd 10154 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → -(!‘(𝑥 + 1)) = -(!‘(((𝑎 + 𝐴) − 1) + 1)))
117116oveq2d 6565 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑-(!‘(𝑥 + 1))) = (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1))))
118117oveq2d 6565 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (2 · (2↑-(!‘(𝑥 + 1)))) = (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))))
119 fveq2 6103 . . . . . . . 8 (𝑥 = ((𝑎 + 𝐴) − 1) → (!‘𝑥) = (!‘((𝑎 + 𝐴) − 1)))
120119oveq2d 6565 . . . . . . 7 (𝑥 = ((𝑎 + 𝐴) − 1) → (2↑(!‘𝑥)) = (2↑(!‘((𝑎 + 𝐴) − 1))))
121120oveq1d 6564 . . . . . 6 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2↑(!‘𝑥))↑𝐴) = ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))
122121oveq2d 6565 . . . . 5 (𝑥 = ((𝑎 + 𝐴) − 1) → (𝐵 / ((2↑(!‘𝑥))↑𝐴)) = (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴)))
123118, 122breq12d 4596 . . . 4 (𝑥 = ((𝑎 + 𝐴) − 1) → ((2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)) ↔ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))))
124123rspcev 3282 . . 3 ((((𝑎 + 𝐴) − 1) ∈ ℕ ∧ (2 · (2↑-(!‘(((𝑎 + 𝐴) − 1) + 1)))) ≤ (𝐵 / ((2↑(!‘((𝑎 + 𝐴) − 1)))↑𝐴))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12514, 113, 124syl2anc 691 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ (2 / 𝐵) < (2↑𝑎))) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
12610, 125rexlimddv 3017 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  cexp 12722  !cfa 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923
This theorem is referenced by:  aaliou3lem9  23909
  Copyright terms: Public domain W3C validator