MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem3 Structured version   Visualization version   GIF version

Theorem 2sqlem3 24945
Description: Lemma for 2sqlem5 24947. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
2sqlem4.9 (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
Assertion
Ref Expression
2sqlem3 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqlem4.3 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
2 2sqlem4.4 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
3 gzreim 15481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + (i · 𝐵)) ∈ ℤ[i])
41, 2, 3syl2anc 691 . . . . . . 7 (𝜑 → (𝐴 + (i · 𝐵)) ∈ ℤ[i])
5 2sqlem4.5 . . . . . . . 8 (𝜑𝐶 ∈ ℤ)
6 2sqlem4.6 . . . . . . . 8 (𝜑𝐷 ∈ ℤ)
7 gzreim 15481 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 + (i · 𝐷)) ∈ ℤ[i])
85, 6, 7syl2anc 691 . . . . . . 7 (𝜑 → (𝐶 + (i · 𝐷)) ∈ ℤ[i])
9 gzmulcl 15480 . . . . . . 7 (((𝐴 + (i · 𝐵)) ∈ ℤ[i] ∧ (𝐶 + (i · 𝐷)) ∈ ℤ[i]) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i])
104, 8, 9syl2anc 691 . . . . . 6 (𝜑 → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i])
11 gzcn 15474 . . . . . 6 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
1210, 11syl 17 . . . . 5 (𝜑 → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
13 2sqlem5.2 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
14 prmnn 15226 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1513, 14syl 17 . . . . . 6 (𝜑𝑃 ∈ ℕ)
1615nncnd 10913 . . . . 5 (𝜑𝑃 ∈ ℂ)
1715nnne0d 10942 . . . . 5 (𝜑𝑃 ≠ 0)
1812, 16, 17divcld 10680 . . . 4 (𝜑 → (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℂ)
1915nnred 10912 . . . . . 6 (𝜑𝑃 ∈ ℝ)
2019, 12, 17redivd 13817 . . . . 5 (𝜑 → (ℜ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
21 prmz 15227 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2213, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℤ)
23 dvdsmul2 14842 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝑃))
2422, 22, 23syl2anc 691 . . . . . . . . . . . 12 (𝜑𝑃 ∥ (𝑃 · 𝑃))
2516sqvald 12867 . . . . . . . . . . . 12 (𝜑 → (𝑃↑2) = (𝑃 · 𝑃))
2624, 25breqtrrd 4611 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃↑2))
27 2sqlem5.1 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
2827nnzd 11357 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
29 zsqcl 12796 . . . . . . . . . . . . 13 (𝑃 ∈ ℤ → (𝑃↑2) ∈ ℤ)
3022, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃↑2) ∈ ℤ)
31 dvdsmul2 14842 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑃↑2) ∈ ℤ) → (𝑃↑2) ∥ (𝑁 · (𝑃↑2)))
3228, 30, 31syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑃↑2) ∥ (𝑁 · (𝑃↑2)))
3328, 30zmulcld 11364 . . . . . . . . . . . 12 (𝜑 → (𝑁 · (𝑃↑2)) ∈ ℤ)
34 dvdstr 14856 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃↑2) ∈ ℤ ∧ (𝑁 · (𝑃↑2)) ∈ ℤ) → ((𝑃 ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ (𝑁 · (𝑃↑2))) → 𝑃 ∥ (𝑁 · (𝑃↑2))))
3522, 30, 33, 34syl3anc 1318 . . . . . . . . . . 11 (𝜑 → ((𝑃 ∥ (𝑃↑2) ∧ (𝑃↑2) ∥ (𝑁 · (𝑃↑2))) → 𝑃 ∥ (𝑁 · (𝑃↑2))))
3626, 32, 35mp2and 711 . . . . . . . . . 10 (𝜑𝑃 ∥ (𝑁 · (𝑃↑2)))
37 gzcn 15474 . . . . . . . . . . . . . . . 16 ((𝐴 + (i · 𝐵)) ∈ ℤ[i] → (𝐴 + (i · 𝐵)) ∈ ℂ)
384, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + (i · 𝐵)) ∈ ℂ)
3938abscld 14023 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
4039recnd 9947 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴 + (i · 𝐵))) ∈ ℂ)
41 gzcn 15474 . . . . . . . . . . . . . . . 16 ((𝐶 + (i · 𝐷)) ∈ ℤ[i] → (𝐶 + (i · 𝐷)) ∈ ℂ)
428, 41syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 + (i · 𝐷)) ∈ ℂ)
4342abscld 14023 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐶 + (i · 𝐷))) ∈ ℝ)
4443recnd 9947 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐶 + (i · 𝐷))) ∈ ℂ)
4540, 44sqmuld 12882 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)))
461zred 11358 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
472zred 11358 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
4846, 47crred 13819 . . . . . . . . . . . . . . . 16 (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
4948oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((ℜ‘(𝐴 + (i · 𝐵)))↑2) = (𝐴↑2))
5046, 47crimd 13820 . . . . . . . . . . . . . . . 16 (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
5150oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((ℑ‘(𝐴 + (i · 𝐵)))↑2) = (𝐵↑2))
5249, 51oveq12d 6567 . . . . . . . . . . . . . 14 (𝜑 → (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2)) = ((𝐴↑2) + (𝐵↑2)))
5338absvalsq2d 14030 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(𝐴 + (i · 𝐵)))↑2) = (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2)))
54 2sqlem4.7 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
5552, 53, 543eqtr4d 2654 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴 + (i · 𝐵)))↑2) = (𝑁 · 𝑃))
565zred 11358 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ℝ)
576zred 11358 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ ℝ)
5856, 57crred 13819 . . . . . . . . . . . . . . . 16 (𝜑 → (ℜ‘(𝐶 + (i · 𝐷))) = 𝐶)
5958oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((ℜ‘(𝐶 + (i · 𝐷)))↑2) = (𝐶↑2))
6056, 57crimd 13820 . . . . . . . . . . . . . . . 16 (𝜑 → (ℑ‘(𝐶 + (i · 𝐷))) = 𝐷)
6160oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((ℑ‘(𝐶 + (i · 𝐷)))↑2) = (𝐷↑2))
6259, 61oveq12d 6567 . . . . . . . . . . . . . 14 (𝜑 → (((ℜ‘(𝐶 + (i · 𝐷)))↑2) + ((ℑ‘(𝐶 + (i · 𝐷)))↑2)) = ((𝐶↑2) + (𝐷↑2)))
6342absvalsq2d 14030 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(𝐶 + (i · 𝐷)))↑2) = (((ℜ‘(𝐶 + (i · 𝐷)))↑2) + ((ℑ‘(𝐶 + (i · 𝐷)))↑2)))
64 2sqlem4.8 . . . . . . . . . . . . . 14 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
6562, 63, 643eqtr4d 2654 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐶 + (i · 𝐷)))↑2) = 𝑃)
6655, 65oveq12d 6567 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)) = ((𝑁 · 𝑃) · 𝑃))
6727nncnd 10913 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
6867, 16, 16mulassd 9942 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 𝑃) · 𝑃) = (𝑁 · (𝑃 · 𝑃)))
6945, 66, 683eqtrd 2648 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (𝑁 · (𝑃 · 𝑃)))
7038, 42absmuld 14041 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷)))))
7170oveq1d 6564 . . . . . . . . . . 11 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2))
7225oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑃↑2)) = (𝑁 · (𝑃 · 𝑃)))
7369, 71, 723eqtr4d 2654 . . . . . . . . . 10 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (𝑁 · (𝑃↑2)))
7436, 73breqtrrd 4611 . . . . . . . . 9 (𝜑𝑃 ∥ ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))
7512absvalsq2d 14030 . . . . . . . . . 10 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
76 elgz 15473 . . . . . . . . . . . . . . 15 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] ↔ (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ ∧ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ ∧ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ))
7776simp2bi 1070 . . . . . . . . . . . . . 14 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
7810, 77syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
79 zsqcl 12796 . . . . . . . . . . . . 13 ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
8078, 79syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
8180zcnd 11359 . . . . . . . . . . 11 (𝜑 → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℂ)
8276simp3bi 1071 . . . . . . . . . . . . . 14 (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℤ[i] → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
8310, 82syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ)
84 zsqcl 12796 . . . . . . . . . . . . 13 ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
8583, 84syl 17 . . . . . . . . . . . 12 (𝜑 → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ)
8685zcnd 11359 . . . . . . . . . . 11 (𝜑 → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℂ)
8781, 86addcomd 10117 . . . . . . . . . 10 (𝜑 → (((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)) = (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
8875, 87eqtrd 2644 . . . . . . . . 9 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
8974, 88breqtrd 4609 . . . . . . . 8 (𝜑𝑃 ∥ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2)))
90 2sqlem4.9 . . . . . . . . . . . 12 (𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
915zcnd 11359 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
922zcnd 11359 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℂ)
9391, 92mulcld 9939 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
941zcnd 11359 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
956zcnd 11359 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℂ)
9694, 95mulcld 9939 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
9793, 96addcomd 10117 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) = ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
9891, 92mulcomd 9940 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶))
9998oveq2d 6565 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
10097, 99eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
10190, 100breqtrd 4609 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
10238, 42immuld 13807 . . . . . . . . . . . 12 (𝜑 → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))))
10348, 60oveq12d 6567 . . . . . . . . . . . . 13 (𝜑 → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐷))
10450, 58oveq12d 6567 . . . . . . . . . . . . 13 (𝜑 → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐶))
105103, 104oveq12d 6567 . . . . . . . . . . . 12 (𝜑 → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
106102, 105eqtrd 2644 . . . . . . . . . . 11 (𝜑 → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
107101, 106breqtrrd 4611 . . . . . . . . . 10 (𝜑𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))
108 2nn 11062 . . . . . . . . . . . 12 2 ∈ ℕ
109108a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ)
110 prmdvdsexp 15265 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
11113, 83, 109, 110syl3anc 1318 . . . . . . . . . 10 (𝜑 → (𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
112107, 111mpbird 246 . . . . . . . . 9 (𝜑𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))
113 dvdsadd2b 14866 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ ∧ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ∈ ℤ ∧ 𝑃 ∥ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))) → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))))
11422, 80, 85, 112, 113syl112anc 1322 . . . . . . . 8 (𝜑 → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) + ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))))
11589, 114mpbird 246 . . . . . . 7 (𝜑𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2))
116 prmdvdsexp 15265 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
11713, 78, 109, 116syl3anc 1318 . . . . . . 7 (𝜑 → (𝑃 ∥ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) ↔ 𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))))
118115, 117mpbid 221 . . . . . 6 (𝜑𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))
119 dvdsval2 14824 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ) → (𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
12022, 17, 78, 119syl3anc 1318 . . . . . 6 (𝜑 → (𝑃 ∥ (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
121118, 120mpbid 221 . . . . 5 (𝜑 → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ)
12220, 121eqeltrd 2688 . . . 4 (𝜑 → (ℜ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ)
12319, 12, 17imdivd 13818 . . . . 5 (𝜑 → (ℑ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
124 dvdsval2 14824 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℤ) → (𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
12522, 17, 83, 124syl3anc 1318 . . . . . 6 (𝜑 → (𝑃 ∥ (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ↔ ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ))
126107, 125mpbid 221 . . . . 5 (𝜑 → ((ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃) ∈ ℤ)
127123, 126eqeltrd 2688 . . . 4 (𝜑 → (ℑ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ)
128 elgz 15473 . . . 4 ((((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℤ[i] ↔ ((((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℂ ∧ (ℜ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ ∧ (ℑ‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) ∈ ℤ))
12918, 122, 127, 128syl3anbrc 1239 . . 3 (𝜑 → (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℤ[i])
13012, 16, 17absdivd 14042 . . . . . 6 (𝜑 → (abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / (abs‘𝑃)))
13115nnnn0d 11228 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
132131nn0ge0d 11231 . . . . . . . 8 (𝜑 → 0 ≤ 𝑃)
13319, 132absidd 14009 . . . . . . 7 (𝜑 → (abs‘𝑃) = 𝑃)
134133oveq2d 6565 . . . . . 6 (𝜑 → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / (abs‘𝑃)) = ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
135130, 134eqtrd 2644 . . . . 5 (𝜑 → (abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)) = ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃))
136135oveq1d 6564 . . . 4 (𝜑 → ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2) = (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃)↑2))
13712abscld 14023 . . . . . 6 (𝜑 → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℝ)
138137recnd 9947 . . . . 5 (𝜑 → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) ∈ ℂ)
139138, 16, 17sqdivd 12883 . . . 4 (𝜑 → (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) / 𝑃)↑2) = (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) / (𝑃↑2)))
14073oveq1d 6564 . . . . 5 (𝜑 → (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) / (𝑃↑2)) = ((𝑁 · (𝑃↑2)) / (𝑃↑2)))
14115nnsqcld 12891 . . . . . . 7 (𝜑 → (𝑃↑2) ∈ ℕ)
142141nncnd 10913 . . . . . 6 (𝜑 → (𝑃↑2) ∈ ℂ)
143141nnne0d 10942 . . . . . 6 (𝜑 → (𝑃↑2) ≠ 0)
14467, 142, 143divcan4d 10686 . . . . 5 (𝜑 → ((𝑁 · (𝑃↑2)) / (𝑃↑2)) = 𝑁)
145140, 144eqtrd 2644 . . . 4 (𝜑 → (((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) / (𝑃↑2)) = 𝑁)
146136, 139, 1453eqtrrd 2649 . . 3 (𝜑𝑁 = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2))
147 fveq2 6103 . . . . . 6 (𝑥 = (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) → (abs‘𝑥) = (abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃)))
148147oveq1d 6564 . . . . 5 (𝑥 = (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) → ((abs‘𝑥)↑2) = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2))
149148eqeq2d 2620 . . . 4 (𝑥 = (((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) → (𝑁 = ((abs‘𝑥)↑2) ↔ 𝑁 = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2)))
150149rspcev 3282 . . 3 (((((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃) ∈ ℤ[i] ∧ 𝑁 = ((abs‘(((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) / 𝑃))↑2)) → ∃𝑥 ∈ ℤ[i] 𝑁 = ((abs‘𝑥)↑2))
151129, 146, 150syl2anc 691 . 2 (𝜑 → ∃𝑥 ∈ ℤ[i] 𝑁 = ((abs‘𝑥)↑2))
152 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
1531522sqlem1 24942 . 2 (𝑁𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝑁 = ((abs‘𝑥)↑2))
154151, 153sylibr 223 1 (𝜑𝑁𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cexp 12722  cre 13685  cim 13686  abscabs 13822  cdvds 14821  cprime 15223  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-gz 15472
This theorem is referenced by:  2sqlem4  24946
  Copyright terms: Public domain W3C validator