MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgz Structured version   Visualization version   GIF version

Theorem elgz 15473
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
elgz (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))

Proof of Theorem elgz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
21eleq1d 2672 . . . 4 (𝑥 = 𝐴 → ((ℜ‘𝑥) ∈ ℤ ↔ (ℜ‘𝐴) ∈ ℤ))
3 fveq2 6103 . . . . 5 (𝑥 = 𝐴 → (ℑ‘𝑥) = (ℑ‘𝐴))
43eleq1d 2672 . . . 4 (𝑥 = 𝐴 → ((ℑ‘𝑥) ∈ ℤ ↔ (ℑ‘𝐴) ∈ ℤ))
52, 4anbi12d 743 . . 3 (𝑥 = 𝐴 → (((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ) ↔ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
6 df-gz 15472 . . 3 ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
75, 6elrab2 3333 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
8 3anass 1035 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ↔ (𝐴 ∈ ℂ ∧ ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)))
97, 8bitr4i 266 1 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  cc 9813  cz 11254  cre 13685  cim 13686  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-gz 15472
This theorem is referenced by:  gzcn  15474  zgz  15475  igz  15476  gznegcl  15477  gzcjcl  15478  gzaddcl  15479  gzmulcl  15480  gzabssqcl  15483  4sqlem4a  15493  2sqlem2  24943  2sqlem3  24945  cntotbnd  32765
  Copyright terms: Public domain W3C validator