MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem1 Structured version   Visualization version   GIF version

Theorem 2sqlem1 24942
Description: Lemma for 2sq 24955. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
Distinct variable groups:   𝑥,𝑤   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem1
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
21eleq2i 2680 . 2 (𝐴𝑆𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)))
3 fveq2 6103 . . . . 5 (𝑤 = 𝑥 → (abs‘𝑤) = (abs‘𝑥))
43oveq1d 6564 . . . 4 (𝑤 = 𝑥 → ((abs‘𝑤)↑2) = ((abs‘𝑥)↑2))
54cbvmptv 4678 . . 3 (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = (𝑥 ∈ ℤ[i] ↦ ((abs‘𝑥)↑2))
6 ovex 6577 . . 3 ((abs‘𝑥)↑2) ∈ V
75, 6elrnmpti 5297 . 2 (𝐴 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
82, 7bitri 263 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2))
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  wrex 2897  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  2c2 10947  cexp 12722  abscabs 13822  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-cnv 5046  df-dm 5048  df-rn 5049  df-iota 5768  df-fv 5812  df-ov 6552
This theorem is referenced by:  2sqlem2  24943  mul2sq  24944  2sqlem3  24945  2sqlem9  24952  2sqlem10  24953
  Copyright terms: Public domain W3C validator