MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzcn Structured version   Visualization version   GIF version

Theorem gzcn 15474
Description: A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzcn (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)

Proof of Theorem gzcn
StepHypRef Expression
1 elgz 15473 . 2 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
21simp1bi 1069 1 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  cfv 5804  cc 9813  cz 11254  cre 13685  cim 13686  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-gz 15472
This theorem is referenced by:  gznegcl  15477  gzcjcl  15478  gzaddcl  15479  gzmulcl  15480  gzsubcl  15482  gzabssqcl  15483  4sqlem4a  15493  4sqlem4  15494  mul4sqlem  15495  mul4sq  15496  4sqlem12  15498  4sqlem17  15503  gzsubrg  19619  gzrngunitlem  19630  gzrngunit  19631  2sqlem2  24943  mul2sq  24944  2sqlem3  24945  cntotbnd  32765
  Copyright terms: Public domain W3C validator