Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacbnd3 Structured version   Visualization version   GIF version

Theorem logfacbnd3 24748
 Description: Show the stronger statement log(𝑥!) = 𝑥log𝑥 − 𝑥 + 𝑂(log𝑥) alluded to in logfacrlim 24749. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
logfacbnd3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))

Proof of Theorem logfacbnd3
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
21rprege0d 11755 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 flge0nn0 12483 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
42, 3syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
5 faccl 12932 . . . . . . . . . 10 ((⌊‘𝐴) ∈ ℕ0 → (!‘(⌊‘𝐴)) ∈ ℕ)
64, 5syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℕ)
76nnrpd 11746 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℝ+)
8 relogcl 24126 . . . . . . . 8 ((!‘(⌊‘𝐴)) ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
10 rpre 11715 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
12 relogcl 24126 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1312adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
14 peano2rem 10227 . . . . . . . . 9 ((log‘𝐴) ∈ ℝ → ((log‘𝐴) − 1) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴) − 1) ∈ ℝ)
1611, 15remulcld 9949 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · ((log‘𝐴) − 1)) ∈ ℝ)
179, 16resubcld 10337 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℝ)
1817recnd 9947 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ)
1918abscld 14023 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ)
20 peano2rem 10227 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
2119, 20syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
22 ax-1cn 9873 . . . . 5 1 ∈ ℂ
23 subcl 10159 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2418, 22, 23sylancl 693 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2524abscld 14023 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ∈ ℝ)
26 abs1 13885 . . . . 5 (abs‘1) = 1
2726oveq2i 6560 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) = ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1)
28 abs2dif 13920 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2918, 22, 28sylancl 693 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
3027, 29syl5eqbrr 4619 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
31 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
3231oveq2d 6565 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
3332sumeq1d 14279 . . . . . . . . . 10 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
34 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
35 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
3635oveq1d 6564 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥) − 1) = ((log‘𝐴) − 1))
3734, 36oveq12d 6567 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 · ((log‘𝑥) − 1)) = (𝐴 · ((log‘𝐴) − 1)))
3833, 37oveq12d 6567 . . . . . . . . 9 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
39 eqid 2610 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))
40 ovex 6577 . . . . . . . . 9 𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) ∈ V
4138, 39, 40fvmpt3i 6196 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4241adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
43 logfac 24151 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
444, 43syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4544oveq1d 6564 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4642, 45eqtr4d 2647 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))))
47 1rp 11712 . . . . . . 7 1 ∈ ℝ+
48 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
49 1z 11284 . . . . . . . . . . . . . . 15 1 ∈ ℤ
50 flid 12471 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5149, 50ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5248, 51syl6eq 2660 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
5352oveq2d 6565 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
5453sumeq1d 14279 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...1)(log‘𝑛))
55 0cn 9911 . . . . . . . . . . . 12 0 ∈ ℂ
56 fveq2 6103 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = (log‘1))
57 log1 24136 . . . . . . . . . . . . . 14 (log‘1) = 0
5856, 57syl6eq 2660 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = 0)
5958fsum1 14320 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)(log‘𝑛) = 0)
6049, 55, 59mp2an 704 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)(log‘𝑛) = 0
6154, 60syl6eq 2660 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = 0)
62 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
63 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 1 → (log‘𝑥) = (log‘1))
6463, 57syl6eq 2660 . . . . . . . . . . . . 13 (𝑥 = 1 → (log‘𝑥) = 0)
6564oveq1d 6564 . . . . . . . . . . . 12 (𝑥 = 1 → ((log‘𝑥) − 1) = (0 − 1))
6662, 65oveq12d 6567 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (1 · (0 − 1)))
6755, 22subcli 10236 . . . . . . . . . . . 12 (0 − 1) ∈ ℂ
6867mulid2i 9922 . . . . . . . . . . 11 (1 · (0 − 1)) = (0 − 1)
6966, 68syl6eq 2660 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (0 − 1))
7061, 69oveq12d 6567 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (0 − (0 − 1)))
71 nncan 10189 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → (0 − (0 − 1)) = 1)
7255, 22, 71mp2an 704 . . . . . . . . 9 (0 − (0 − 1)) = 1
7370, 72syl6eq 2660 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = 1)
7473, 39, 40fvmpt3i 6196 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7547, 74mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7646, 75oveq12d 6567 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1)) = (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1))
7776fveq2d 6107 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) = (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
78 ioorp 12122 . . . . . 6 (0(,)+∞) = ℝ+
7978eqcomi 2619 . . . . 5 + = (0(,)+∞)
80 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
8149a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
82 1re 9918 . . . . . 6 1 ∈ ℝ
8382a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
84 pnfxr 9971 . . . . . 6 +∞ ∈ ℝ*
8584a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
86 1nn0 11185 . . . . . . 7 1 ∈ ℕ0
8782, 86nn0addge1i 11218 . . . . . 6 1 ≤ (1 + 1)
8887a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
89 0red 9920 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
90 rpre 11715 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
9190adantl 481 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
92 relogcl 24126 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
9392adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
94 peano2rem 10227 . . . . . . 7 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
9593, 94syl 17 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
9691, 95remulcld 9949 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℝ)
97 nnrp 11718 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
9897, 93sylan2 490 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → (log‘𝑥) ∈ ℝ)
99 advlog 24200 . . . . . 6 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
10099a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
101 fveq2 6103 . . . . 5 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
102 simp32 1091 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
103 logleb 24153 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
1041033ad2ant2 1076 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
105102, 104mpbid 221 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
106 simprr 792 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
107 simprl 790 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
108 logleb 24153 . . . . . . . 8 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
10947, 107, 108sylancr 694 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
110106, 109mpbid 221 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
11157, 110syl5eqbrr 4619 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
11247a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
113 1le1 10534 . . . . . 6 1 ≤ 1
114113a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
115 simpr 476 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
11611rexrd 9968 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
117 pnfge 11840 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
118116, 117syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
11979, 80, 81, 83, 85, 88, 89, 96, 93, 98, 100, 101, 105, 39, 111, 112, 1, 114, 115, 118, 35dvfsum2 23601 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) ≤ (log‘𝐴))
12077, 119eqbrtrrd 4607 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ≤ (log‘𝐴))
12121, 25, 13, 30, 120letrd 10073 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴))
12219, 83, 13lesubaddd 10503 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴) ↔ (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1)))
123121, 122mpbid 221 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  ℝ*cxr 9952   ≤ cle 9954   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℝ+crp 11708  (,)cioo 12046  ...cfz 12197  ⌊cfl 12453  !cfa 12922  abscabs 13822  Σcsu 14264   D cdv 23433  logclog 24105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107 This theorem is referenced by:  logfacrlim  24749
 Copyright terms: Public domain W3C validator