MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacbnd3 Structured version   Unicode version

Theorem logfacbnd3 22694
Description: Show the stronger statement  log ( x ! )  =  x log x  -  x  +  O ( log x
) alluded to in logfacrlim 22695. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
logfacbnd3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  <_  ( ( log `  A )  +  1 ) )

Proof of Theorem logfacbnd3
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR+ )
21rprege0d 11144 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( A  e.  RR  /\  0  <_  A ) )
3 flge0nn0 11782 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
42, 3syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e. 
NN0 )
5 faccl 12177 . . . . . . . . . 10  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
64, 5syl 16 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  NN )
76nnrpd 11136 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  RR+ )
8 relogcl 22159 . . . . . . . 8  |-  ( ( ! `  ( |_
`  A ) )  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
97, 8syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
10 rpre 11107 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  RR )
1110adantr 465 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR )
12 relogcl 22159 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
1312adantr 465 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  A )  e.  RR )
14 peano2rem 9785 . . . . . . . . 9  |-  ( ( log `  A )  e.  RR  ->  (
( log `  A
)  -  1 )  e.  RR )
1513, 14syl 16 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  A
)  -  1 )  e.  RR )
1611, 15remulcld 9524 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( A  x.  ( ( log `  A )  - 
1 ) )  e.  RR )
179, 16resubcld 9886 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  RR )
1817recnd 9522 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  CC )
1918abscld 13039 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  e.  RR )
20 peano2rem 9785 . . . 4  |-  ( ( abs `  ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  e.  RR  ->  ( ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  -  1 )  e.  RR )
2119, 20syl 16 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  e.  RR )
22 ax-1cn 9450 . . . . 5  |-  1  e.  CC
23 subcl 9719 . . . . 5  |-  ( ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 )  e.  CC )
2418, 22, 23sylancl 662 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 )  e.  CC )
2524abscld 13039 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) )  e.  RR )
26 abs1 12903 . . . . 5  |-  ( abs `  1 )  =  1
2726oveq2i 6210 . . . 4  |-  ( ( abs `  ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  -  ( abs `  1 ) )  =  ( ( abs `  ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )
28 abs2dif 12937 . . . . 5  |-  ( ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  -  ( abs `  1 ) )  <_  ( abs `  ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) )  - 
1 ) ) )
2918, 22, 28sylancl 662 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  -  ( abs `  1 ) )  <_  ( abs `  ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) )  - 
1 ) ) )
3027, 29syl5eqbrr 4433 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  <_  ( abs `  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) ) )
31 fveq2 5798 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( |_ `  x )  =  ( |_ `  A
) )
3231oveq2d 6215 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
1 ... ( |_ `  x ) )  =  ( 1 ... ( |_ `  A ) ) )
3332sumeq1d 13295 . . . . . . . . . 10  |-  ( x  =  A  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
34 id 22 . . . . . . . . . . 11  |-  ( x  =  A  ->  x  =  A )
35 fveq2 5798 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( log `  x )  =  ( log `  A
) )
3635oveq1d 6214 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( log `  x
)  -  1 )  =  ( ( log `  A )  -  1 ) )
3734, 36oveq12d 6217 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  x.  ( ( log `  x )  -  1 ) )  =  ( A  x.  ( ( log `  A
)  -  1 ) ) )
3833, 37oveq12d 6217 . . . . . . . . 9  |-  ( x  =  A  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n )  -  ( x  x.  ( ( log `  x
)  -  1 ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( log `  n )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )
39 eqid 2454 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) )
40 ovex 6224 . . . . . . . . 9  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) )  e.  _V
4138, 39, 40fvmpt3i 5886 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  A
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( log `  n )  -  ( A  x.  ( ( log `  A )  - 
1 ) ) ) )
4241adantr 465 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 A )  =  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
)  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )
43 logfac 22181 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
444, 43syl 16 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( log `  n ) )
4544oveq1d 6214 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( log `  n )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )
4642, 45eqtr4d 2498 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 A )  =  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )
47 1rp 11105 . . . . . . 7  |-  1  e.  RR+
48 fveq2 5798 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( |_ `  x )  =  ( |_ `  1
) )
49 1z 10786 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
50 flid 11773 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ZZ  ->  ( |_ `  1 )  =  1 )
5149, 50ax-mp 5 . . . . . . . . . . . . . 14  |-  ( |_
`  1 )  =  1
5248, 51syl6eq 2511 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( |_ `  x )  =  1 )
5352oveq2d 6215 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
1 ... ( |_ `  x ) )  =  ( 1 ... 1
) )
5453sumeq1d 13295 . . . . . . . . . . 11  |-  ( x  =  1  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  =  sum_ n  e.  ( 1 ... 1
) ( log `  n
) )
55 0cn 9488 . . . . . . . . . . . 12  |-  0  e.  CC
56 fveq2 5798 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  ( log `  n )  =  ( log `  1
) )
57 log1 22166 . . . . . . . . . . . . . 14  |-  ( log `  1 )  =  0
5856, 57syl6eq 2511 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( log `  n )  =  0 )
5958fsum1 13335 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  0  e.  CC )  -> 
sum_ n  e.  (
1 ... 1 ) ( log `  n )  =  0 )
6049, 55, 59mp2an 672 . . . . . . . . . . 11  |-  sum_ n  e.  ( 1 ... 1
) ( log `  n
)  =  0
6154, 60syl6eq 2511 . . . . . . . . . 10  |-  ( x  =  1  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  =  0 )
62 id 22 . . . . . . . . . . . 12  |-  ( x  =  1  ->  x  =  1 )
63 fveq2 5798 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( log `  x )  =  ( log `  1
) )
6463, 57syl6eq 2511 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( log `  x )  =  0 )
6564oveq1d 6214 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
( log `  x
)  -  1 )  =  ( 0  -  1 ) )
6662, 65oveq12d 6217 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  x.  ( ( log `  x )  -  1 ) )  =  ( 1  x.  ( 0  -  1 ) ) )
6755, 22subcli 9794 . . . . . . . . . . . 12  |-  ( 0  -  1 )  e.  CC
6867mulid2i 9499 . . . . . . . . . . 11  |-  ( 1  x.  ( 0  -  1 ) )  =  ( 0  -  1 )
6966, 68syl6eq 2511 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  x.  ( ( log `  x )  -  1 ) )  =  ( 0  -  1 ) )
7061, 69oveq12d 6217 . . . . . . . . 9  |-  ( x  =  1  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n )  -  ( x  x.  ( ( log `  x
)  -  1 ) ) )  =  ( 0  -  ( 0  -  1 ) ) )
71 nncan 9748 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  1  e.  CC )  ->  ( 0  -  (
0  -  1 ) )  =  1 )
7255, 22, 71mp2an 672 . . . . . . . . 9  |-  ( 0  -  ( 0  -  1 ) )  =  1
7370, 72syl6eq 2511 . . . . . . . 8  |-  ( x  =  1  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n )  -  ( x  x.  ( ( log `  x
)  -  1 ) ) )  =  1 )
7473, 39, 40fvmpt3i 5886 . . . . . . 7  |-  ( 1  e.  RR+  ->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  1
)  =  1 )
7547, 74mp1i 12 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 1 )  =  1 )
7646, 75oveq12d 6217 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 A )  -  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 1 ) )  =  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) )
7776fveq2d 5802 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  A
)  -  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  1
) ) )  =  ( abs `  (
( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) ) )
78 ioorp 11483 . . . . . 6  |-  ( 0 (,) +oo )  = 
RR+
7978eqcomi 2467 . . . . 5  |-  RR+  =  ( 0 (,) +oo )
80 nnuz 11006 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
8149a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  e.  ZZ )
82 1re 9495 . . . . . 6  |-  1  e.  RR
8382a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  e.  RR )
84 pnfxr 11202 . . . . . 6  |- +oo  e.  RR*
8584a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  -> +oo  e.  RR* )
86 1nn0 10705 . . . . . . 7  |-  1  e.  NN0
8782, 86nn0addge1i 10738 . . . . . 6  |-  1  <_  ( 1  +  1 )
8887a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  ( 1  +  1 ) )
89 0red 9497 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  0  e.  RR )
90 rpre 11107 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  RR )
9190adantl 466 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  x  e.  RR )
92 relogcl 22159 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
9392adantl 466 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  ( log `  x
)  e.  RR )
94 peano2rem 9785 . . . . . . 7  |-  ( ( log `  x )  e.  RR  ->  (
( log `  x
)  -  1 )  e.  RR )
9593, 94syl 16 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  ( ( log `  x
)  -  1 )  e.  RR )
9691, 95remulcld 9524 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  ( x  x.  (
( log `  x
)  -  1 ) )  e.  RR )
97 nnrp 11110 . . . . . 6  |-  ( x  e.  NN  ->  x  e.  RR+ )
9897, 93sylan2 474 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  NN )  ->  ( log `  x
)  e.  RR )
99 advlog 22231 . . . . . 6  |-  ( RR 
_D  ( x  e.  RR+  |->  ( x  x.  ( ( log `  x
)  -  1 ) ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) )
10099a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x.  ( ( log `  x
)  -  1 ) ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
101 fveq2 5798 . . . . 5  |-  ( x  =  n  ->  ( log `  x )  =  ( log `  n
) )
102 simp32 1025 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  n  e.  RR+ )  /\  ( 1  <_  x  /\  x  <_  n  /\  n  <_ +oo ) )  ->  x  <_  n )
103 logleb 22184 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  <_  n  <->  ( log `  x )  <_  ( log `  n ) ) )
1041033ad2ant2 1010 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  n  e.  RR+ )  /\  ( 1  <_  x  /\  x  <_  n  /\  n  <_ +oo ) )  -> 
( x  <_  n  <->  ( log `  x )  <_  ( log `  n
) ) )
105102, 104mpbid 210 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  n  e.  RR+ )  /\  ( 1  <_  x  /\  x  <_  n  /\  n  <_ +oo ) )  -> 
( log `  x
)  <_  ( log `  n ) )
106 simprr 756 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  1  <_  x )
107 simprl 755 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  x  e.  RR+ )
108 logleb 22184 . . . . . . . 8  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
10947, 107, 108sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  ( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
110106, 109mpbid 210 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  ( log `  1 )  <_  ( log `  x ) )
11157, 110syl5eqbrr 4433 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  0  <_  ( log `  x ) )
11247a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  e.  RR+ )
113 1le1 10074 . . . . . 6  |-  1  <_  1
114113a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  1 )
115 simpr 461 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  A )
11611rexrd 9543 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR* )
117 pnfge 11220 . . . . . 6  |-  ( A  e.  RR*  ->  A  <_ +oo )
118116, 117syl 16 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  <_ +oo )
11979, 80, 81, 83, 85, 88, 89, 96, 93, 98, 100, 101, 105, 39, 111, 112, 1, 114, 115, 118, 35dvfsum2 21638 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  A
)  -  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  1
) ) )  <_ 
( log `  A
) )
12077, 119eqbrtrrd 4421 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) )  <_  ( log `  A ) )
12121, 25, 13, 30, 120letrd 9638 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  <_  ( log `  A ) )
12219, 83, 13lesubaddd 10046 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  <_  ( log `  A )  <->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  <_ 
( ( log `  A
)  +  1 ) ) )
123121, 122mpbid 210 1  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  <_  ( ( log `  A )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4399    |-> cmpt 4457   ` cfv 5525  (class class class)co 6199   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    + caddc 9395    x. cmul 9397   +oocpnf 9525   RR*cxr 9527    <_ cle 9529    - cmin 9705   NNcn 10432   NN0cn0 10689   ZZcz 10756   RR+crp 11101   (,)cioo 11410   ...cfz 11553   |_cfl 11756   !cfa 12167   abscabs 12840   sum_csu 13280    _D cdv 21470   logclog 22138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-ioc 11415  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-mod 11825  df-seq 11923  df-exp 11982  df-fac 12168  df-bc 12195  df-hash 12220  df-shft 12673  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-limsup 13066  df-clim 13083  df-rlim 13084  df-sum 13281  df-ef 13470  df-sin 13472  df-cos 13473  df-pi 13475  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-fbas 17938  df-fg 17939  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cld 18754  df-ntr 18755  df-cls 18756  df-nei 18833  df-lp 18871  df-perf 18872  df-cn 18962  df-cnp 18963  df-haus 19050  df-cmp 19121  df-tx 19266  df-hmeo 19459  df-fil 19550  df-fm 19642  df-flim 19643  df-flf 19644  df-xms 20026  df-ms 20027  df-tms 20028  df-cncf 20585  df-limc 21473  df-dv 21474  df-log 22140
This theorem is referenced by:  logfacrlim  22695
  Copyright terms: Public domain W3C validator