MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacbnd3 Structured version   Unicode version

Theorem logfacbnd3 23254
Description: Show the stronger statement  log ( x ! )  =  x log x  -  x  +  O ( log x
) alluded to in logfacrlim 23255. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
logfacbnd3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  <_  ( ( log `  A )  +  1 ) )

Proof of Theorem logfacbnd3
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR+ )
21rprege0d 11263 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( A  e.  RR  /\  0  <_  A ) )
3 flge0nn0 11922 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( |_ `  A
)  e.  NN0 )
42, 3syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( |_ `  A )  e. 
NN0 )
5 faccl 12331 . . . . . . . . . 10  |-  ( ( |_ `  A )  e.  NN0  ->  ( ! `
 ( |_ `  A ) )  e.  NN )
64, 5syl 16 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  NN )
76nnrpd 11255 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( ! `  ( |_ `  A ) )  e.  RR+ )
8 relogcl 22719 . . . . . . . 8  |-  ( ( ! `  ( |_
`  A ) )  e.  RR+  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
97, 8syl 16 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  e.  RR )
10 rpre 11226 . . . . . . . . 9  |-  ( A  e.  RR+  ->  A  e.  RR )
1110adantr 465 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR )
12 relogcl 22719 . . . . . . . . . 10  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
1312adantr 465 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  A )  e.  RR )
14 peano2rem 9886 . . . . . . . . 9  |-  ( ( log `  A )  e.  RR  ->  (
( log `  A
)  -  1 )  e.  RR )
1513, 14syl 16 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  A
)  -  1 )  e.  RR )
1611, 15remulcld 9624 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( A  x.  ( ( log `  A )  - 
1 ) )  e.  RR )
179, 16resubcld 9987 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  RR )
1817recnd 9622 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  CC )
1918abscld 13230 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  e.  RR )
20 peano2rem 9886 . . . 4  |-  ( ( abs `  ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  e.  RR  ->  ( ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  -  1 )  e.  RR )
2119, 20syl 16 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  e.  RR )
22 ax-1cn 9550 . . . . 5  |-  1  e.  CC
23 subcl 9819 . . . . 5  |-  ( ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 )  e.  CC )
2418, 22, 23sylancl 662 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 )  e.  CC )
2524abscld 13230 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) )  e.  RR )
26 abs1 13093 . . . . 5  |-  ( abs `  1 )  =  1
2726oveq2i 6295 . . . 4  |-  ( ( abs `  ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  -  ( abs `  1 ) )  =  ( ( abs `  ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )
28 abs2dif 13128 . . . . 5  |-  ( ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  -  ( abs `  1 ) )  <_  ( abs `  ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) )  - 
1 ) ) )
2918, 22, 28sylancl 662 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  -  ( abs `  1 ) )  <_  ( abs `  ( ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) )  - 
1 ) ) )
3027, 29syl5eqbrr 4481 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  <_  ( abs `  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) ) )
31 fveq2 5866 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( |_ `  x )  =  ( |_ `  A
) )
3231oveq2d 6300 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
1 ... ( |_ `  x ) )  =  ( 1 ... ( |_ `  A ) ) )
3332sumeq1d 13486 . . . . . . . . . 10  |-  ( x  =  A  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
34 id 22 . . . . . . . . . . 11  |-  ( x  =  A  ->  x  =  A )
35 fveq2 5866 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( log `  x )  =  ( log `  A
) )
3635oveq1d 6299 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( log `  x
)  -  1 )  =  ( ( log `  A )  -  1 ) )
3734, 36oveq12d 6302 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  x.  ( ( log `  x )  -  1 ) )  =  ( A  x.  ( ( log `  A
)  -  1 ) ) )
3833, 37oveq12d 6302 . . . . . . . . 9  |-  ( x  =  A  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n )  -  ( x  x.  ( ( log `  x
)  -  1 ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( log `  n )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )
39 eqid 2467 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) )
40 ovex 6309 . . . . . . . . 9  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) )  e.  _V
4138, 39, 40fvmpt3i 5954 . . . . . . . 8  |-  ( A  e.  RR+  ->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  A
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( log `  n )  -  ( A  x.  ( ( log `  A )  - 
1 ) ) ) )
4241adantr 465 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 A )  =  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( log `  n
)  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )
43 logfac 22741 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  NN0  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( log `  n
) )
444, 43syl 16 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( log `  ( ! `  ( |_ `  A ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( log `  n ) )
4544oveq1d 6299 . . . . . . 7  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( log `  n )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )
4642, 45eqtr4d 2511 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 A )  =  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )
47 1rp 11224 . . . . . . 7  |-  1  e.  RR+
48 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( |_ `  x )  =  ( |_ `  1
) )
49 1z 10894 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
50 flid 11913 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ZZ  ->  ( |_ `  1 )  =  1 )
5149, 50ax-mp 5 . . . . . . . . . . . . . 14  |-  ( |_
`  1 )  =  1
5248, 51syl6eq 2524 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( |_ `  x )  =  1 )
5352oveq2d 6300 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
1 ... ( |_ `  x ) )  =  ( 1 ... 1
) )
5453sumeq1d 13486 . . . . . . . . . . 11  |-  ( x  =  1  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  =  sum_ n  e.  ( 1 ... 1
) ( log `  n
) )
55 0cn 9588 . . . . . . . . . . . 12  |-  0  e.  CC
56 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  ( log `  n )  =  ( log `  1
) )
57 log1 22726 . . . . . . . . . . . . . 14  |-  ( log `  1 )  =  0
5856, 57syl6eq 2524 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( log `  n )  =  0 )
5958fsum1 13527 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  0  e.  CC )  -> 
sum_ n  e.  (
1 ... 1 ) ( log `  n )  =  0 )
6049, 55, 59mp2an 672 . . . . . . . . . . 11  |-  sum_ n  e.  ( 1 ... 1
) ( log `  n
)  =  0
6154, 60syl6eq 2524 . . . . . . . . . 10  |-  ( x  =  1  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  =  0 )
62 id 22 . . . . . . . . . . . 12  |-  ( x  =  1  ->  x  =  1 )
63 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  ( log `  x )  =  ( log `  1
) )
6463, 57syl6eq 2524 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( log `  x )  =  0 )
6564oveq1d 6299 . . . . . . . . . . . 12  |-  ( x  =  1  ->  (
( log `  x
)  -  1 )  =  ( 0  -  1 ) )
6662, 65oveq12d 6302 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  x.  ( ( log `  x )  -  1 ) )  =  ( 1  x.  ( 0  -  1 ) ) )
6755, 22subcli 9895 . . . . . . . . . . . 12  |-  ( 0  -  1 )  e.  CC
6867mulid2i 9599 . . . . . . . . . . 11  |-  ( 1  x.  ( 0  -  1 ) )  =  ( 0  -  1 )
6966, 68syl6eq 2524 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  x.  ( ( log `  x )  -  1 ) )  =  ( 0  -  1 ) )
7061, 69oveq12d 6302 . . . . . . . . 9  |-  ( x  =  1  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n )  -  ( x  x.  ( ( log `  x
)  -  1 ) ) )  =  ( 0  -  ( 0  -  1 ) ) )
71 nncan 9848 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  1  e.  CC )  ->  ( 0  -  (
0  -  1 ) )  =  1 )
7255, 22, 71mp2an 672 . . . . . . . . 9  |-  ( 0  -  ( 0  -  1 ) )  =  1
7370, 72syl6eq 2524 . . . . . . . 8  |-  ( x  =  1  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n )  -  ( x  x.  ( ( log `  x
)  -  1 ) ) )  =  1 )
7473, 39, 40fvmpt3i 5954 . . . . . . 7  |-  ( 1  e.  RR+  ->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  1
)  =  1 )
7547, 74mp1i 12 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 1 )  =  1 )
7646, 75oveq12d 6302 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 A )  -  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( log `  n
)  -  ( x  x.  ( ( log `  x )  -  1 ) ) ) ) `
 1 ) )  =  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) )
7776fveq2d 5870 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  A
)  -  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  1
) ) )  =  ( abs `  (
( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) ) )
78 ioorp 11602 . . . . . 6  |-  ( 0 (,) +oo )  = 
RR+
7978eqcomi 2480 . . . . 5  |-  RR+  =  ( 0 (,) +oo )
80 nnuz 11117 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
8149a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  e.  ZZ )
82 1re 9595 . . . . . 6  |-  1  e.  RR
8382a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  e.  RR )
84 pnfxr 11321 . . . . . 6  |- +oo  e.  RR*
8584a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  -> +oo  e.  RR* )
86 1nn0 10811 . . . . . . 7  |-  1  e.  NN0
8782, 86nn0addge1i 10844 . . . . . 6  |-  1  <_  ( 1  +  1 )
8887a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  ( 1  +  1 ) )
89 0red 9597 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  0  e.  RR )
90 rpre 11226 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  RR )
9190adantl 466 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  x  e.  RR )
92 relogcl 22719 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
9392adantl 466 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  ( log `  x
)  e.  RR )
94 peano2rem 9886 . . . . . . 7  |-  ( ( log `  x )  e.  RR  ->  (
( log `  x
)  -  1 )  e.  RR )
9593, 94syl 16 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  ( ( log `  x
)  -  1 )  e.  RR )
9691, 95remulcld 9624 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  RR+ )  ->  ( x  x.  (
( log `  x
)  -  1 ) )  e.  RR )
97 nnrp 11229 . . . . . 6  |-  ( x  e.  NN  ->  x  e.  RR+ )
9897, 93sylan2 474 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  x  e.  NN )  ->  ( log `  x
)  e.  RR )
99 advlog 22791 . . . . . 6  |-  ( RR 
_D  ( x  e.  RR+  |->  ( x  x.  ( ( log `  x
)  -  1 ) ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) )
10099a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x.  ( ( log `  x
)  -  1 ) ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
101 fveq2 5866 . . . . 5  |-  ( x  =  n  ->  ( log `  x )  =  ( log `  n
) )
102 simp32 1033 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  n  e.  RR+ )  /\  ( 1  <_  x  /\  x  <_  n  /\  n  <_ +oo ) )  ->  x  <_  n )
103 logleb 22744 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  <_  n  <->  ( log `  x )  <_  ( log `  n ) ) )
1041033ad2ant2 1018 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  n  e.  RR+ )  /\  ( 1  <_  x  /\  x  <_  n  /\  n  <_ +oo ) )  -> 
( x  <_  n  <->  ( log `  x )  <_  ( log `  n
) ) )
105102, 104mpbid 210 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  n  e.  RR+ )  /\  ( 1  <_  x  /\  x  <_  n  /\  n  <_ +oo ) )  -> 
( log `  x
)  <_  ( log `  n ) )
106 simprr 756 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  1  <_  x )
107 simprl 755 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  x  e.  RR+ )
108 logleb 22744 . . . . . . . 8  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
10947, 107, 108sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  ( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
110106, 109mpbid 210 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  ( log `  1 )  <_  ( log `  x ) )
11157, 110syl5eqbrr 4481 . . . . 5  |-  ( ( ( A  e.  RR+  /\  1  <_  A )  /\  ( x  e.  RR+  /\  1  <_  x )
)  ->  0  <_  ( log `  x ) )
11247a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  e.  RR+ )
113 1le1 10177 . . . . . 6  |-  1  <_  1
114113a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  1 )
115 simpr 461 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  1  <_  A )
11611rexrd 9643 . . . . . 6  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  e.  RR* )
117 pnfge 11339 . . . . . 6  |-  ( A  e.  RR*  ->  A  <_ +oo )
118116, 117syl 16 . . . . 5  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  A  <_ +oo )
11979, 80, 81, 83, 85, 88, 89, 96, 93, 98, 100, 101, 105, 39, 111, 112, 1, 114, 115, 118, 35dvfsum2 22198 . . . 4  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  A
)  -  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( log `  n )  -  (
x  x.  ( ( log `  x )  -  1 ) ) ) ) `  1
) ) )  <_ 
( log `  A
) )
12077, 119eqbrtrrd 4469 . . 3  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( ( log `  ( ! `
 ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) )  -  1 ) )  <_  ( log `  A ) )
12121, 25, 13, 30, 120letrd 9738 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  <_  ( log `  A ) )
12219, 83, 13lesubaddd 10149 . 2  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  (
( ( abs `  (
( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  - 
1 )  <_  ( log `  A )  <->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A
)  -  1 ) ) ) )  <_ 
( ( log `  A
)  +  1 ) ) )
123121, 122mpbid 210 1  |-  ( ( A  e.  RR+  /\  1  <_  A )  ->  ( abs `  ( ( log `  ( ! `  ( |_ `  A ) ) )  -  ( A  x.  ( ( log `  A )  -  1 ) ) ) )  <_  ( ( log `  A )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497   +oocpnf 9625   RR*cxr 9627    <_ cle 9629    - cmin 9805   NNcn 10536   NN0cn0 10795   ZZcz 10864   RR+crp 11220   (,)cioo 11529   ...cfz 11672   |_cfl 11895   !cfa 12321   abscabs 13030   sum_csu 13471    _D cdv 22030   logclog 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700
This theorem is referenced by:  logfacrlim  23255
  Copyright terms: Public domain W3C validator