MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem3 Structured version   Visualization version   GIF version

Theorem cantnfp1lem3 8460
Description: Lemma for cantnfp1 8461. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
cantnfp1.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑂𝑘)) ·𝑜 (𝐹‘(𝑂𝑘))) +𝑜 𝑧)), ∅)
cantnfp1.k 𝐾 = OrdIso( E , (𝐺 supp ∅))
cantnfp1.m 𝑀 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐾𝑘)) ·𝑜 (𝐺‘(𝐾𝑘))) +𝑜 𝑧)), ∅)
Assertion
Ref Expression
cantnfp1lem3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
Distinct variable groups:   𝑡,𝑘,𝑧,𝐵   𝐴,𝑘,𝑡,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑡,𝑧   𝑘,𝐺,𝑡,𝑧   𝑘,𝐾,𝑡,𝑧   𝑘,𝑂,𝑧   𝜑,𝑘,𝑡,𝑧   𝑘,𝑌,𝑡,𝑧   𝑘,𝑋,𝑡,𝑧
Allowed substitution hints:   𝐹(𝑡)   𝐻(𝑧,𝑡,𝑘)   𝑀(𝑧,𝑡,𝑘)   𝑂(𝑡)

Proof of Theorem cantnfp1lem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfp1.o . . 3 𝑂 = OrdIso( E , (𝐹 supp ∅))
5 cantnfp1.g . . . 4 (𝜑𝐺𝑆)
6 cantnfp1.x . . . 4 (𝜑𝑋𝐵)
7 cantnfp1.y . . . 4 (𝜑𝑌𝐴)
8 cantnfp1.s . . . 4 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
9 cantnfp1.f . . . 4 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
101, 2, 3, 5, 6, 7, 8, 9cantnfp1lem1 8458 . . 3 (𝜑𝐹𝑆)
11 cantnfp1.h . . 3 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑂𝑘)) ·𝑜 (𝐹‘(𝑂𝑘))) +𝑜 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 8448 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝑂))
13 cantnfp1.e . . . 4 (𝜑 → ∅ ∈ 𝑌)
141, 2, 3, 5, 6, 7, 8, 9, 13, 4cantnfp1lem2 8459 . . 3 (𝜑 → dom 𝑂 = suc dom 𝑂)
1514fveq2d 6107 . 2 (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc dom 𝑂))
161, 2, 3, 4, 10cantnfcl 8447 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
1716simprd 478 . . . . . 6 (𝜑 → dom 𝑂 ∈ ω)
1814, 17eqeltrrd 2689 . . . . 5 (𝜑 → suc dom 𝑂 ∈ ω)
19 peano2b 6973 . . . . 5 ( dom 𝑂 ∈ ω ↔ suc dom 𝑂 ∈ ω)
2018, 19sylibr 223 . . . 4 (𝜑 dom 𝑂 ∈ ω)
211, 2, 3, 4, 10, 11cantnfsuc 8450 . . . 4 ((𝜑 dom 𝑂 ∈ ω) → (𝐻‘suc dom 𝑂) = (((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) +𝑜 (𝐻 dom 𝑂)))
2220, 21mpdan 699 . . 3 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) +𝑜 (𝐻 dom 𝑂)))
23 suppssdm 7195 . . . . . . . . . . . . . . . . 17 (𝐹 supp ∅) ⊆ dom 𝐹
247adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐵) → 𝑌𝐴)
251, 2, 3cantnfs 8446 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
265, 25mpbid 221 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
2726simpld 474 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺:𝐵𝐴)
2827ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
2924, 28ifcld 4081 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
3029, 9fmptd 6292 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝐵𝐴)
31 fdm 5964 . . . . . . . . . . . . . . . . . 18 (𝐹:𝐵𝐴 → dom 𝐹 = 𝐵)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐵)
3323, 32syl5sseq 3616 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
343, 33ssexd 4733 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) ∈ V)
3516simpld 474 . . . . . . . . . . . . . . 15 (𝜑 → E We (𝐹 supp ∅))
364oiiso 8325 . . . . . . . . . . . . . . 15 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
3734, 35, 36syl2anc 691 . . . . . . . . . . . . . 14 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
38 isof1o 6473 . . . . . . . . . . . . . 14 (𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
40 f1ocnv 6062 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂)
41 f1of 6050 . . . . . . . . . . . . 13 (𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐹 supp ∅)⟶dom 𝑂)
4239, 40, 413syl 18 . . . . . . . . . . . 12 (𝜑𝑂:(𝐹 supp ∅)⟶dom 𝑂)
43 iftrue 4042 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4443, 9fvmptg 6189 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑌𝐴) → (𝐹𝑋) = 𝑌)
456, 7, 44syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑋) = 𝑌)
46 onelon 5665 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
472, 7, 46syl2anc 691 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ On)
48 on0eln0 5697 . . . . . . . . . . . . . . . 16 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
4947, 48syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
5013, 49mpbid 221 . . . . . . . . . . . . . 14 (𝜑𝑌 ≠ ∅)
5145, 50eqnetrd 2849 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑋) ≠ ∅)
52 ffn 5958 . . . . . . . . . . . . . . 15 (𝐹:𝐵𝐴𝐹 Fn 𝐵)
5330, 52syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
54 0ex 4718 . . . . . . . . . . . . . . 15 ∅ ∈ V
5554a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
56 elsuppfn 7190 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
5753, 3, 55, 56syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
586, 51, 57mpbir2and 959 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐹 supp ∅))
5942, 58ffvelrnd 6268 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
60 elssuni 4403 . . . . . . . . . . 11 ((𝑂𝑋) ∈ dom 𝑂 → (𝑂𝑋) ⊆ dom 𝑂)
6159, 60syl 17 . . . . . . . . . 10 (𝜑 → (𝑂𝑋) ⊆ dom 𝑂)
624oicl 8317 . . . . . . . . . . . 12 Ord dom 𝑂
63 ordelon 5664 . . . . . . . . . . . 12 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
6462, 59, 63sylancr 694 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ On)
65 nnon 6963 . . . . . . . . . . . 12 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ On)
6620, 65syl 17 . . . . . . . . . . 11 (𝜑 dom 𝑂 ∈ On)
67 ontri1 5674 . . . . . . . . . . 11 (((𝑂𝑋) ∈ On ∧ dom 𝑂 ∈ On) → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
6864, 66, 67syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
6961, 68mpbid 221 . . . . . . . . 9 (𝜑 → ¬ dom 𝑂 ∈ (𝑂𝑋))
70 sucidg 5720 . . . . . . . . . . . . . 14 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ suc dom 𝑂)
7120, 70syl 17 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 ∈ suc dom 𝑂)
7271, 14eleqtrrd 2691 . . . . . . . . . . . 12 (𝜑 dom 𝑂 ∈ dom 𝑂)
73 isorel 6476 . . . . . . . . . . . 12 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
7437, 72, 59, 73syl12anc 1316 . . . . . . . . . . 11 (𝜑 → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
75 fvex 6113 . . . . . . . . . . . 12 (𝑂𝑋) ∈ V
7675epelc 4951 . . . . . . . . . . 11 ( dom 𝑂 E (𝑂𝑋) ↔ dom 𝑂 ∈ (𝑂𝑋))
77 fvex 6113 . . . . . . . . . . . 12 (𝑂‘(𝑂𝑋)) ∈ V
7877epelc 4951 . . . . . . . . . . 11 ((𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)))
7974, 76, 783bitr3g 301 . . . . . . . . . 10 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋))))
80 f1ocnvfv2 6433 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ∧ 𝑋 ∈ (𝐹 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
8139, 58, 80syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
8281eleq2d 2673 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
8379, 82bitrd 267 . . . . . . . . 9 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
8469, 83mtbid 313 . . . . . . . 8 (𝜑 → ¬ (𝑂 dom 𝑂) ∈ 𝑋)
858sseld 3567 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → (𝑂 dom 𝑂) ∈ 𝑋))
86 onss 6882 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → 𝐵 ⊆ On)
873, 86syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ On)
8833, 87sstrd 3578 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) ⊆ On)
894oif 8318 . . . . . . . . . . . . . . . 16 𝑂:dom 𝑂⟶(𝐹 supp ∅)
9089ffvelrni 6266 . . . . . . . . . . . . . . 15 ( dom 𝑂 ∈ dom 𝑂 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
9172, 90syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
9288, 91sseldd 3569 . . . . . . . . . . . . 13 (𝜑 → (𝑂 dom 𝑂) ∈ On)
93 eloni 5650 . . . . . . . . . . . . 13 ((𝑂 dom 𝑂) ∈ On → Ord (𝑂 dom 𝑂))
9492, 93syl 17 . . . . . . . . . . . 12 (𝜑 → Ord (𝑂 dom 𝑂))
95 ordn2lp 5660 . . . . . . . . . . . 12 (Ord (𝑂 dom 𝑂) → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
9694, 95syl 17 . . . . . . . . . . 11 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
97 imnan 437 . . . . . . . . . . 11 (((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)) ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
9896, 97sylibr 223 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
9985, 98syld 46 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
100 onelon 5665 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
1013, 6, 100syl2anc 691 . . . . . . . . . . . 12 (𝜑𝑋 ∈ On)
102 eloni 5650 . . . . . . . . . . . 12 (𝑋 ∈ On → Ord 𝑋)
103101, 102syl 17 . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
104 ordirr 5658 . . . . . . . . . . 11 (Ord 𝑋 → ¬ 𝑋𝑋)
105103, 104syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑋)
106 elsni 4142 . . . . . . . . . . . 12 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑂 dom 𝑂) = 𝑋)
107106eleq2d 2673 . . . . . . . . . . 11 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑋 ∈ (𝑂 dom 𝑂) ↔ 𝑋𝑋))
108107notbid 307 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ {𝑋} → (¬ 𝑋 ∈ (𝑂 dom 𝑂) ↔ ¬ 𝑋𝑋))
109105, 108syl5ibrcom 236 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ {𝑋} → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
110 eldifi 3694 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
111110adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
1127adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
113 fvex 6113 . . . . . . . . . . . . . . 15 (𝐺𝑘) ∈ V
114 ifexg 4107 . . . . . . . . . . . . . . 15 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
115112, 113, 114sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
116 eqeq1 2614 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
117 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
118116, 117ifbieq2d 4061 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
119118, 9fvmptg 6189 . . . . . . . . . . . . . 14 ((𝑘𝐵 ∧ if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
120111, 115, 119syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
121 eldifn 3695 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
122121adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
123 velsn 4141 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
124 elun2 3743 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
125123, 124sylbir 224 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
126122, 125nsyl 134 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
127126iffalsed 4047 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
128 ssun1 3738 . . . . . . . . . . . . . . . 16 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
129 sscon 3706 . . . . . . . . . . . . . . . 16 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
130128, 129ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
131130sseli 3564 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
132 ssid 3587 . . . . . . . . . . . . . . . 16 (𝐺 supp ∅) ⊆ (𝐺 supp ∅)
133132a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
13427, 133, 3, 13suppssr 7213 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
135131, 134sylan2 490 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
136120, 127, 1353eqtrd 2648 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
13730, 136suppss 7212 . . . . . . . . . . 11 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
138137, 91sseldd 3569 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}))
139 elun 3715 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}) ↔ ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
140138, 139sylib 207 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
14199, 109, 140mpjaod 395 . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑂 dom 𝑂))
142 ioran 510 . . . . . . . 8 (¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)) ↔ (¬ (𝑂 dom 𝑂) ∈ 𝑋 ∧ ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
14384, 141, 142sylanbrc 695 . . . . . . 7 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
144 ordtri3 5676 . . . . . . . 8 ((Ord (𝑂 dom 𝑂) ∧ Ord 𝑋) → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
14594, 103, 144syl2anc 691 . . . . . . 7 (𝜑 → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
146143, 145mpbird 246 . . . . . 6 (𝜑 → (𝑂 dom 𝑂) = 𝑋)
147146oveq2d 6565 . . . . 5 (𝜑 → (𝐴𝑜 (𝑂 dom 𝑂)) = (𝐴𝑜 𝑋))
148146fveq2d 6107 . . . . . 6 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = (𝐹𝑋))
149148, 45eqtrd 2644 . . . . 5 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = 𝑌)
150147, 149oveq12d 6567 . . . 4 (𝜑 → ((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) = ((𝐴𝑜 𝑋) ·𝑜 𝑌))
151 nnord 6965 . . . . . . . . 9 ( dom 𝑂 ∈ ω → Ord dom 𝑂)
15220, 151syl 17 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
153 sssucid 5719 . . . . . . . . . 10 dom 𝑂 ⊆ suc dom 𝑂
154153, 14syl5sseqr 3617 . . . . . . . . 9 (𝜑 dom 𝑂 ⊆ dom 𝑂)
155 f1ofo 6057 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:dom 𝑂onto→(𝐹 supp ∅))
15639, 155syl 17 . . . . . . . . . . . 12 (𝜑𝑂:dom 𝑂onto→(𝐹 supp ∅))
157 foima 6033 . . . . . . . . . . . 12 (𝑂:dom 𝑂onto→(𝐹 supp ∅) → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
158156, 157syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
159 ffn 5958 . . . . . . . . . . . . . 14 (𝑂:dom 𝑂⟶(𝐹 supp ∅) → 𝑂 Fn dom 𝑂)
16089, 159ax-mp 5 . . . . . . . . . . . . 13 𝑂 Fn dom 𝑂
161 fnsnfv 6168 . . . . . . . . . . . . 13 ((𝑂 Fn dom 𝑂 dom 𝑂 ∈ dom 𝑂) → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
162160, 72, 161sylancr 694 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
163146sneqd 4137 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = {𝑋})
164162, 163eqtr3d 2646 . . . . . . . . . . 11 (𝜑 → (𝑂 “ { dom 𝑂}) = {𝑋})
165158, 164difeq12d 3691 . . . . . . . . . 10 (𝜑 → ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})) = ((𝐹 supp ∅) ∖ {𝑋}))
166 ordirr 5658 . . . . . . . . . . . . . . . . 17 (Ord dom 𝑂 → ¬ dom 𝑂 dom 𝑂)
167152, 166syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ dom 𝑂 dom 𝑂)
168 disjsn 4192 . . . . . . . . . . . . . . . 16 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ ¬ dom 𝑂 dom 𝑂)
169167, 168sylibr 223 . . . . . . . . . . . . . . 15 (𝜑 → ( dom 𝑂 ∩ { dom 𝑂}) = ∅)
170 disj3 3973 . . . . . . . . . . . . . . 15 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
171169, 170sylib 207 . . . . . . . . . . . . . 14 (𝜑 dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
172 difun2 4000 . . . . . . . . . . . . . 14 (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}) = ( dom 𝑂 ∖ { dom 𝑂})
173171, 172syl6eqr 2662 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
174 df-suc 5646 . . . . . . . . . . . . . . 15 suc dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂})
17514, 174syl6eq 2660 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂}))
176175difeq1d 3689 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑂 ∖ { dom 𝑂}) = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
177173, 176eqtr4d 2647 . . . . . . . . . . . 12 (𝜑 dom 𝑂 = (dom 𝑂 ∖ { dom 𝑂}))
178177imaeq2d 5385 . . . . . . . . . . 11 (𝜑 → (𝑂 dom 𝑂) = (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})))
179 dff1o3 6056 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ↔ (𝑂:dom 𝑂onto→(𝐹 supp ∅) ∧ Fun 𝑂))
180179simprbi 479 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → Fun 𝑂)
181 imadif 5887 . . . . . . . . . . . 12 (Fun 𝑂 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
18239, 180, 1813syl 18 . . . . . . . . . . 11 (𝜑 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
183178, 182eqtrd 2644 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
1848, 105ssneldd 3571 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝐺 supp ∅))
185 disjsn 4192 . . . . . . . . . . . . 13 (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐺 supp ∅))
186184, 185sylibr 223 . . . . . . . . . . . 12 (𝜑 → ((𝐺 supp ∅) ∩ {𝑋}) = ∅)
187 fvex 6113 . . . . . . . . . . . . . . . . . . . . 21 (𝐺𝑋) ∈ V
188 dif1o 7467 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑋) ∈ (V ∖ 1𝑜) ↔ ((𝐺𝑋) ∈ V ∧ (𝐺𝑋) ≠ ∅))
189187, 188mpbiran 955 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑋) ∈ (V ∖ 1𝑜) ↔ (𝐺𝑋) ≠ ∅)
190 ffn 5958 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺:𝐵𝐴𝐺 Fn 𝐵)
19127, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn 𝐵)
192 elsuppfn 7190 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
193191, 3, 55, 192syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
194189a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1𝑜) ↔ (𝐺𝑋) ≠ ∅))
195194bicomd 212 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1𝑜)))
196195anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1𝑜))))
197193, 196bitrd 267 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1𝑜))))
1988sseld 3567 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋𝑋))
199197, 198sylbird 249 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1𝑜)) → 𝑋𝑋))
2006, 199mpand 707 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1𝑜) → 𝑋𝑋))
201189, 200syl5bir 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺𝑋) ≠ ∅ → 𝑋𝑋))
202201necon1bd 2800 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝑋𝑋 → (𝐺𝑋) = ∅))
203105, 202mpd 15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑋) = ∅)
204203adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑋) = ∅)
205 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑋 → (𝐺𝑘) = (𝐺𝑋))
206205eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → ((𝐺𝑘) = ∅ ↔ (𝐺𝑋) = ∅))
207204, 206syl5ibrcom 236 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝑘 = 𝑋 → (𝐺𝑘) = ∅))
208 eldifi 3694 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅)) → 𝑘𝐵)
209208adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑘𝐵)
2107adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑌𝐴)
211210, 113, 114sylancl 693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
212209, 211, 119syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
213 ssid 3587 . . . . . . . . . . . . . . . . . . 19 (𝐹 supp ∅) ⊆ (𝐹 supp ∅)
214213a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅))
21530, 214, 3, 13suppssr 7213 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = ∅)
216212, 215eqtr3d 2646 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅)
217 iffalse 4045 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
218217eqeq1d 2612 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅ ↔ (𝐺𝑘) = ∅))
219216, 218syl5ibcom 234 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (¬ 𝑘 = 𝑋 → (𝐺𝑘) = ∅))
220207, 219pm2.61d 169 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑘) = ∅)
22127, 220suppss 7212 . . . . . . . . . . . . 13 (𝜑 → (𝐺 supp ∅) ⊆ (𝐹 supp ∅))
222 reldisj 3972 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ⊆ (𝐹 supp ∅) → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
223221, 222syl 17 . . . . . . . . . . . 12 (𝜑 → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
224186, 223mpbid 221 . . . . . . . . . . 11 (𝜑 → (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋}))
225 uncom 3719 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ∪ {𝑋}) = ({𝑋} ∪ (𝐺 supp ∅))
226137, 225syl6sseq 3614 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)))
227 ssundif 4004 . . . . . . . . . . . 12 ((𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)) ↔ ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
228226, 227sylib 207 . . . . . . . . . . 11 (𝜑 → ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
229224, 228eqssd 3585 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) = ((𝐹 supp ∅) ∖ {𝑋}))
230165, 183, 2293eqtr4rd 2655 . . . . . . . . 9 (𝜑 → (𝐺 supp ∅) = (𝑂 dom 𝑂))
231 isores3 6485 . . . . . . . . 9 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ dom 𝑂 ⊆ dom 𝑂 ∧ (𝐺 supp ∅) = (𝑂 dom 𝑂)) → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
23237, 154, 230, 231syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
233 cantnfp1.k . . . . . . . . . . 11 𝐾 = OrdIso( E , (𝐺 supp ∅))
2341, 2, 3, 233, 5cantnfcl 8447 . . . . . . . . . 10 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝐾 ∈ ω))
235234simpld 474 . . . . . . . . 9 (𝜑 → E We (𝐺 supp ∅))
236 epse 5021 . . . . . . . . 9 E Se (𝐺 supp ∅)
237233oieu 8327 . . . . . . . . 9 (( E We (𝐺 supp ∅) ∧ E Se (𝐺 supp ∅)) → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
238235, 236, 237sylancl 693 . . . . . . . 8 (𝜑 → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
239152, 232, 238mpbi2and 958 . . . . . . 7 (𝜑 → ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾))
240239simpld 474 . . . . . 6 (𝜑 dom 𝑂 = dom 𝐾)
241240fveq2d 6107 . . . . 5 (𝜑 → (𝑀 dom 𝑂) = (𝑀‘dom 𝐾))
242 eleq1 2676 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂))
243 fveq2 6103 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
244 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
245 cantnfp1.m . . . . . . . . . . . . . 14 𝑀 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐾𝑘)) ·𝑜 (𝐺‘(𝐾𝑘))) +𝑜 𝑧)), ∅)
246245seqom0g 7438 . . . . . . . . . . . . 13 (∅ ∈ V → (𝑀‘∅) = ∅)
24754, 246ax-mp 5 . . . . . . . . . . . 12 (𝑀‘∅) = ∅
248244, 247syl6eq 2660 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑀𝑥) = ∅)
249243, 248eqeq12d 2625 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘∅) = ∅))
250242, 249imbi12d 333 . . . . . . . . 9 (𝑥 = ∅ → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)))
251250imbi2d 329 . . . . . . . 8 (𝑥 = ∅ → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))))
252 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
253 fveq2 6103 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
254 fveq2 6103 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
255253, 254eqeq12d 2625 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻𝑦) = (𝑀𝑦)))
256252, 255imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
257256imbi2d 329 . . . . . . . 8 (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)))))
258 eleq1 2676 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂))
259 fveq2 6103 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
260 fveq2 6103 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑀𝑥) = (𝑀‘suc 𝑦))
261259, 260eqeq12d 2625 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
262258, 261imbi12d 333 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
263262imbi2d 329 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
264 eleq1 2676 . . . . . . . . . 10 (𝑥 = dom 𝑂 → (𝑥 ∈ dom 𝑂 dom 𝑂 ∈ dom 𝑂))
265 fveq2 6103 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝐻𝑥) = (𝐻 dom 𝑂))
266 fveq2 6103 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝑀𝑥) = (𝑀 dom 𝑂))
267265, 266eqeq12d 2625 . . . . . . . . . 10 (𝑥 = dom 𝑂 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
268264, 267imbi12d 333 . . . . . . . . 9 (𝑥 = dom 𝑂 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
269268imbi2d 329 . . . . . . . 8 (𝑥 = dom 𝑂 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))))
27011seqom0g 7438 . . . . . . . . . 10 (∅ ∈ V → (𝐻‘∅) = ∅)
27154, 270mp1i 13 . . . . . . . . 9 (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)
272271a1i 11 . . . . . . . 8 (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))
273 nnord 6965 . . . . . . . . . . . . . . . 16 (dom 𝑂 ∈ ω → Ord dom 𝑂)
27417, 273syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Ord dom 𝑂)
275 ordtr 5654 . . . . . . . . . . . . . . 15 (Ord dom 𝑂 → Tr dom 𝑂)
276274, 275syl 17 . . . . . . . . . . . . . 14 (𝜑 → Tr dom 𝑂)
277 trsuc 5727 . . . . . . . . . . . . . 14 ((Tr dom 𝑂 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
278276, 277sylan 487 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
279278ex 449 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
280279imim1d 80 . . . . . . . . . . 11 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
281 oveq2 6557 . . . . . . . . . . . . . 14 ((𝐻𝑦) = (𝑀𝑦) → (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦)))
282 elnn 6967 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → 𝑦 ∈ ω)
283282ancoms 468 . . . . . . . . . . . . . . . . . 18 ((dom 𝑂 ∈ ω ∧ 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
28417, 283sylan 487 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
285278, 284syldan 486 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
2861, 2, 3, 4, 10, 11cantnfsuc 8450 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)))
287285, 286syldan 486 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)))
2881, 2, 3, 233, 5, 245cantnfsuc 8450 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ω) → (𝑀‘suc 𝑦) = (((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) +𝑜 (𝑀𝑦)))
289285, 288syldan 486 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) +𝑜 (𝑀𝑦)))
290239simprd 478 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑂 dom 𝑂) = 𝐾)
291290fveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
292291adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
29314eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
294293biimpa 500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → suc 𝑦 ∈ suc dom 𝑂)
295152adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → Ord dom 𝑂)
296 ordsucelsuc 6914 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord dom 𝑂 → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
297295, 296syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
298294, 297mpbird 246 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 dom 𝑂)
299 fvres 6117 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 dom 𝑂 → ((𝑂 dom 𝑂)‘𝑦) = (𝑂𝑦))
300298, 299syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝑂𝑦))
301292, 300eqtr3d 2646 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) = (𝑂𝑦))
302301oveq2d 6565 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐴𝑜 (𝐾𝑦)) = (𝐴𝑜 (𝑂𝑦)))
303 suppssdm 7195 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 supp ∅) ⊆ dom 𝐺
304 fdm 5964 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺:𝐵𝐴 → dom 𝐺 = 𝐵)
30527, 304syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐺 = 𝐵)
306303, 305syl5sseq 3616 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
307306adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺 supp ∅) ⊆ 𝐵)
308240adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → dom 𝑂 = dom 𝐾)
309298, 308eleqtrd 2690 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝐾)
310233oif 8318 . . . . . . . . . . . . . . . . . . . . . . 23 𝐾:dom 𝐾⟶(𝐺 supp ∅)
311310ffvelrni 6266 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ dom 𝐾 → (𝐾𝑦) ∈ (𝐺 supp ∅))
312309, 311syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ (𝐺 supp ∅))
313307, 312sseldd 3569 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ 𝐵)
3147adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑌𝐴)
315 fvex 6113 . . . . . . . . . . . . . . . . . . . . 21 (𝐺‘(𝐾𝑦)) ∈ V
316 ifexg 4107 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ (𝐺‘(𝐾𝑦)) ∈ V) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
317314, 315, 316sylancl 693 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
318 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = (𝐾𝑦) → (𝑡 = 𝑋 ↔ (𝐾𝑦) = 𝑋))
319 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = (𝐾𝑦) → (𝐺𝑡) = (𝐺‘(𝐾𝑦)))
320318, 319ifbieq2d 4061 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐾𝑦) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
321320, 9fvmptg 6189 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝑦) ∈ 𝐵 ∧ if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V) → (𝐹‘(𝐾𝑦)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
322313, 317, 321syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
323301fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
324184adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ 𝑋 ∈ (𝐺 supp ∅))
325 nelneq 2712 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑦) ∈ (𝐺 supp ∅) ∧ ¬ 𝑋 ∈ (𝐺 supp ∅)) → ¬ (𝐾𝑦) = 𝑋)
326312, 324, 325syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ (𝐾𝑦) = 𝑋)
327326iffalsed 4047 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) = (𝐺‘(𝐾𝑦)))
328322, 323, 3273eqtr3rd 2653 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
329302, 328oveq12d 6567 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) = ((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))))
330329oveq1d 6564 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) +𝑜 (𝑀𝑦)) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦)))
331289, 330eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦)))
332287, 331eqeq12d 2625 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻‘suc 𝑦) = (𝑀‘suc 𝑦) ↔ (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦))))
333281, 332syl5ibr 235 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
334333ex 449 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂 → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
335334a2d 29 . . . . . . . . . . 11 (𝜑 → ((suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
336280, 335syld 46 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
337336a2i 14 . . . . . . . . 9 ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
338337a1i 11 . . . . . . . 8 (𝑦 ∈ ω → ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
339251, 257, 263, 269, 272, 338finds 6984 . . . . . . 7 ( dom 𝑂 ∈ ω → (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
34020, 339mpcom 37 . . . . . 6 (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
34172, 340mpd 15 . . . . 5 (𝜑 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))
3421, 2, 3, 233, 5, 245cantnfval 8448 . . . . 5 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝑀‘dom 𝐾))
343241, 341, 3423eqtr4d 2654 . . . 4 (𝜑 → (𝐻 dom 𝑂) = ((𝐴 CNF 𝐵)‘𝐺))
344150, 343oveq12d 6567 . . 3 (𝜑 → (((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) +𝑜 (𝐻 dom 𝑂)) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
34522, 344eqtrd 2644 . 2 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
34612, 15, 3453eqtrd 2648 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   cuni 4372   class class class wbr 4583  cmpt 4643  Tr wtr 4680   E cep 4947   Se wse 4995   We wwe 4996  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  cmpt2 6551  ωcom 6957   supp csupp 7182  seq𝜔cseqom 7429  1𝑜c1o 7440   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446   finSupp cfsupp 8158  OrdIsocoi 8297   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  cantnfp1  8461
  Copyright terms: Public domain W3C validator