Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordn2lp | Structured version Visualization version GIF version |
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordn2lp | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 5658 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | ordtr 5654 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | trel 4687 | . . 3 ⊢ (Tr 𝐴 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
5 | 1, 4 | mtod 188 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 1977 Tr wtr 4680 Ord word 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-fr 4997 df-we 4999 df-ord 5643 |
This theorem is referenced by: ordtri1 5673 ordnbtwn 5733 ordnbtwnOLD 5734 suc11 5748 smoord 7349 unblem1 8097 cantnfp1lem3 8460 cardprclem 8688 |
Copyright terms: Public domain | W3C validator |