MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfs Structured version   Visualization version   GIF version

Theorem cantnfs 8446
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfs (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))

Proof of Theorem cantnfs
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 eqid 2610 . . . . . 6 {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
3 cantnfs.a . . . . . 6 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
52, 3, 4cantnfdm 8444 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
61, 5syl5eq 2656 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
76eleq2d 2673 . . 3 (𝜑 → (𝐹𝑆𝐹 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}))
8 breq1 4586 . . . 4 (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅))
98elrab 3331 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴𝑚 𝐵) ∧ 𝐹 finSupp ∅))
107, 9syl6bb 275 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹 ∈ (𝐴𝑚 𝐵) ∧ 𝐹 finSupp ∅)))
113, 4elmapd 7758 . . 3 (𝜑 → (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴))
1211anbi1d 737 . 2 (𝜑 → ((𝐹 ∈ (𝐴𝑚 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
1310, 12bitrd 267 1 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  c0 3874   class class class wbr 4583  dom cdm 5038  Oncon0 5640  wf 5800  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-map 7746  df-cnf 8442
This theorem is referenced by:  cantnfcl  8447  cantnfle  8451  cantnflt  8452  cantnff  8454  cantnf0  8455  cantnfrescl  8456  cantnfp1lem1  8458  cantnfp1lem2  8459  cantnfp1lem3  8460  cantnfp1  8461  oemapvali  8464  cantnflem1a  8465  cantnflem1b  8466  cantnflem1c  8467  cantnflem1d  8468  cantnflem1  8469  cantnflem3  8471  cantnf  8473  cnfcomlem  8479  cnfcom  8480  cnfcom2lem  8481  cnfcom3lem  8483  cnfcom3  8484
  Copyright terms: Public domain W3C validator