MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Visualization version   GIF version

Theorem 2sqlem8 24951
Description: Lemma for 2sq 24955. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.e 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
2sqlem8.f 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
Assertion
Ref Expression
2sqlem8 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝐸,𝑎,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝐸(𝑤,𝑏)   𝐹(𝑤,𝑏)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem8.m . . . 4 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 11638 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 207 . . 3 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 474 . 2 (𝜑𝑀 ∈ ℕ)
6 2sqlem9.7 . . . . . . 7 (𝜑𝑀𝑁)
7 eluzelz 11573 . . . . . . . . 9 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
82, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 2sqlem8.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
109nnzd 11357 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
11 2sqlem8.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 2sqlem8.c . . . . . . . . . . . 12 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1311, 5, 124sqlem5 15484 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1413simpld 474 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
15 zsqcl 12796 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
17 2sqlem8.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 2sqlem8.d . . . . . . . . . . . 12 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 5, 184sqlem5 15484 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
2019simpld 474 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
21 zsqcl 12796 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
2316, 22zaddcld 11362 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
2411, 5, 124sqlem8 15487 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐶↑2)))
2517, 5, 184sqlem8 15487 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐷↑2)))
26 zsqcl 12796 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
2711, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) ∈ ℤ)
2827, 16zsubcld 11363 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) − (𝐶↑2)) ∈ ℤ)
29 zsqcl 12796 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
3017, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℤ)
3130, 22zsubcld 11363 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) − (𝐷↑2)) ∈ ℤ)
32 dvds2add 14853 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ ((𝐴↑2) − (𝐶↑2)) ∈ ℤ ∧ ((𝐵↑2) − (𝐷↑2)) ∈ ℤ) → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))))
338, 28, 31, 32syl3anc 1318 . . . . . . . . . 10 (𝜑 → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))))
3424, 25, 33mp2and 711 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
35 2sqlem8.4 . . . . . . . . . . 11 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
3635oveq1d 6564 . . . . . . . . . 10 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))))
3727zcnd 11359 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
3830zcnd 11359 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
3916zcnd 11359 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
4022zcnd 11359 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4137, 38, 39, 40addsub4d 10318 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4236, 41eqtrd 2644 . . . . . . . . 9 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4334, 42breqtrrd 4611 . . . . . . . 8 (𝜑𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2))))
44 dvdssub2 14861 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) ∧ 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
458, 10, 23, 43, 44syl31anc 1321 . . . . . . 7 (𝜑 → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
466, 45mpbid 221 . . . . . 6 (𝜑𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))
47 2sqlem7.2 . . . . . . . . . . . 12 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
48 2sqlem9.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
49 2sqlem8.3 . . . . . . . . . . . 12 (𝜑 → (𝐴 gcd 𝐵) = 1)
501, 47, 48, 6, 9, 2, 11, 17, 49, 35, 12, 182sqlem8a 24950 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
5150nnzd 11357 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℤ)
52 zsqcl2 12803 . . . . . . . . . 10 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5453nn0cnd 11230 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℂ)
55 2sqlem8.e . . . . . . . . . . 11 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
56 gcddvds 15063 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5714, 20, 56syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5857simpld 474 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐶)
5950nnne0d 10942 . . . . . . . . . . . . 13 (𝜑 → (𝐶 gcd 𝐷) ≠ 0)
60 dvdsval2 14824 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6151, 59, 14, 60syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6258, 61mpbid 221 . . . . . . . . . . 11 (𝜑 → (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)
6355, 62syl5eqel 2692 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
64 zsqcl2 12803 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℕ0)
6665nn0cnd 11230 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℂ)
67 2sqlem8.f . . . . . . . . . . 11 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
6857simprd 478 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐷)
69 dvdsval2 14824 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
7051, 59, 20, 69syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
7168, 70mpbid 221 . . . . . . . . . . 11 (𝜑 → (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)
7267, 71syl5eqel 2692 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
73 zsqcl2 12803 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7472, 73syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℕ0)
7574nn0cnd 11230 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℂ)
7654, 66, 75adddid 9943 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))))
7751zcnd 11359 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℂ)
7863zcnd 11359 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
7977, 78sqmuld 12882 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)))
8055oveq2i 6560 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐸) = ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷)))
8114zcnd 11359 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8281, 77, 59divcan2d 10682 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) = 𝐶)
8380, 82syl5eq 2656 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐸) = 𝐶)
8483oveq1d 6564 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (𝐶↑2))
8579, 84eqtr3d 2646 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) = (𝐶↑2))
8672zcnd 11359 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
8777, 86sqmuld 12882 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)))
8867oveq2i 6560 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐹) = ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷)))
8920zcnd 11359 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℂ)
9089, 77, 59divcan2d 10682 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) = 𝐷)
9188, 90syl5eq 2656 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐹) = 𝐷)
9291oveq1d 6564 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (𝐷↑2))
9387, 92eqtr3d 2646 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)) = (𝐷↑2))
9485, 93oveq12d 6567 . . . . . . 7 (𝜑 → ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9576, 94eqtrd 2644 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9646, 95breqtrrd 4611 . . . . 5 (𝜑𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
97 zsqcl 12796 . . . . . . . 8 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
9851, 97syl 17 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
99 gcdcom 15073 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ) → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
1008, 98, 99syl2anc 691 . . . . . 6 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
101 gcddvds 15063 . . . . . . . . . . . . . 14 (((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
10251, 8, 101syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
103102simpld 474 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷))
10451, 8gcdcld 15068 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ0)
105104nn0zd 11356 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ)
106 dvdstr 14856 . . . . . . . . . . . . 13 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
107105, 51, 14, 106syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
108103, 58, 107mp2and 711 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)
109102simprd 478 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)
11013simprd 478 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐶) / 𝑀) ∈ ℤ)
1115nnne0d 10942 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≠ 0)
11211, 14zsubcld 11363 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐶) ∈ ℤ)
113 dvdsval2 14824 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐶) ∈ ℤ) → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1148, 111, 112, 113syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
115110, 114mpbird 246 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐴𝐶))
116 dvdstr 14856 . . . . . . . . . . . . . 14 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐴𝐶) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐴𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)))
117105, 8, 112, 116syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐴𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)))
118109, 115, 117mp2and 711 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶))
119 dvdssub2 14861 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
120105, 11, 14, 118, 119syl31anc 1321 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
121108, 120mpbird 246 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴)
122 dvdstr 14856 . . . . . . . . . . . . 13 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
123105, 51, 20, 122syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
124103, 68, 123mp2and 711 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)
12519simprd 478 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐷) / 𝑀) ∈ ℤ)
12617, 20zsubcld 11363 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝐷) ∈ ℤ)
127 dvdsval2 14824 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐵𝐷) ∈ ℤ) → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1288, 111, 126, 127syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
129125, 128mpbird 246 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐵𝐷))
130 dvdstr 14856 . . . . . . . . . . . . . 14 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐵𝐷) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐵𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)))
131105, 8, 126, 130syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐵𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)))
132109, 129, 131mp2and 711 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷))
133 dvdssub2 14861 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
134105, 17, 20, 132, 133syl31anc 1321 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
135124, 134mpbird 246 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵)
136 ax-1ne0 9884 . . . . . . . . . . . . . . 15 1 ≠ 0
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
13849, 137eqnetrd 2849 . . . . . . . . . . . . 13 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
139138neneqd 2787 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
140 gcdeq0 15076 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
14111, 17, 140syl2anc 691 . . . . . . . . . . . 12 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
142139, 141mtbid 313 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
143 dvdslegcd 15064 . . . . . . . . . . 11 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
144105, 11, 17, 142, 143syl31anc 1321 . . . . . . . . . 10 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
145121, 135, 144mp2and 711 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))
146145, 49breqtrd 4609 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1)
147 simpr 476 . . . . . . . . . . . 12 (((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
148147necon3ai 2807 . . . . . . . . . . 11 (𝑀 ≠ 0 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
149111, 148syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
150 gcdn0cl 15062 . . . . . . . . . 10 ((((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
15151, 8, 149, 150syl21anc 1317 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
152 nnle1eq1 10925 . . . . . . . . 9 (((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
153151, 152syl 17 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
154146, 153mpbid 221 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) = 1)
155 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
156155a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
157 rplpwr 15114 . . . . . . . 8 (((𝐶 gcd 𝐷) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ) → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
15850, 5, 156, 157syl3anc 1318 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
159154, 158mpd 15 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)
160100, 159eqtrd 2644 . . . . 5 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1)
16165, 74nn0addcld 11232 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
162161nn0zd 11356 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
163 coprmdvds 15204 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
1648, 98, 162, 163syl3anc 1318 . . . . 5 (𝜑 → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
16596, 160, 164mp2and 711 . . . 4 (𝜑𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))
166 dvdsval2 14824 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
1678, 111, 162, 166syl3anc 1318 . . . 4 (𝜑 → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
168165, 167mpbid 221 . . 3 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
16965nn0red 11229 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℝ)
17074nn0red 11229 . . . . 5 (𝜑 → (𝐹↑2) ∈ ℝ)
171169, 170readdcld 9948 . . . 4 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
1725nnred 10912 . . . 4 (𝜑𝑀 ∈ ℝ)
1731, 472sqlem7 24949 . . . . . . 7 𝑌 ⊆ (𝑆 ∩ ℕ)
174 inss2 3796 . . . . . . 7 (𝑆 ∩ ℕ) ⊆ ℕ
175173, 174sstri 3577 . . . . . 6 𝑌 ⊆ ℕ
17663, 72gcdcld 15068 . . . . . . . . . 10 (𝜑 → (𝐸 gcd 𝐹) ∈ ℕ0)
177176nn0cnd 11230 . . . . . . . . 9 (𝜑 → (𝐸 gcd 𝐹) ∈ ℂ)
178 1cnd 9935 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
17977mulid1d 9936 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 1) = (𝐶 gcd 𝐷))
18083, 91oveq12d 6567 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = (𝐶 gcd 𝐷))
18114, 20gcdcld 15068 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ0)
182 mulgcd 15103 . . . . . . . . . . 11 (((𝐶 gcd 𝐷) ∈ ℕ0𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
183181, 63, 72, 182syl3anc 1318 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
184179, 180, 1833eqtr2rd 2651 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)) = ((𝐶 gcd 𝐷) · 1))
185177, 178, 77, 59, 184mulcanad 10541 . . . . . . . 8 (𝜑 → (𝐸 gcd 𝐹) = 1)
186 eqidd 2611 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))
187 oveq1 6556 . . . . . . . . . . 11 (𝑥 = 𝐸 → (𝑥 gcd 𝑦) = (𝐸 gcd 𝑦))
188187eqeq1d 2612 . . . . . . . . . 10 (𝑥 = 𝐸 → ((𝑥 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝑦) = 1))
189 oveq1 6556 . . . . . . . . . . . 12 (𝑥 = 𝐸 → (𝑥↑2) = (𝐸↑2))
190189oveq1d 6564 . . . . . . . . . . 11 (𝑥 = 𝐸 → ((𝑥↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝑦↑2)))
191190eqeq2d 2620 . . . . . . . . . 10 (𝑥 = 𝐸 → (((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))))
192188, 191anbi12d 743 . . . . . . . . 9 (𝑥 = 𝐸 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)))))
193 oveq2 6557 . . . . . . . . . . 11 (𝑦 = 𝐹 → (𝐸 gcd 𝑦) = (𝐸 gcd 𝐹))
194193eqeq1d 2612 . . . . . . . . . 10 (𝑦 = 𝐹 → ((𝐸 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝐹) = 1))
195 oveq1 6556 . . . . . . . . . . . 12 (𝑦 = 𝐹 → (𝑦↑2) = (𝐹↑2))
196195oveq2d 6565 . . . . . . . . . . 11 (𝑦 = 𝐹 → ((𝐸↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝐹↑2)))
197196eqeq2d 2620 . . . . . . . . . 10 (𝑦 = 𝐹 → (((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))))
198194, 197anbi12d 743 . . . . . . . . 9 (𝑦 = 𝐹 → (((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))))
199192, 198rspc2ev 3295 . . . . . . . 8 ((𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
20063, 72, 185, 186, 199syl112anc 1322 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
201 ovex 6577 . . . . . . . 8 ((𝐸↑2) + (𝐹↑2)) ∈ V
202 eqeq1 2614 . . . . . . . . . 10 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
203202anbi2d 736 . . . . . . . . 9 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
2042032rexbidv 3039 . . . . . . . 8 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
205201, 204, 47elab2 3323 . . . . . . 7 (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
206200, 205sylibr 223 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
207175, 206sseldi 3566 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ)
208207nngt0d 10941 . . . 4 (𝜑 → 0 < ((𝐸↑2) + (𝐹↑2)))
2095nngt0d 10941 . . . 4 (𝜑 → 0 < 𝑀)
210171, 172, 208, 209divgt0d 10838 . . 3 (𝜑 → 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀))
211 elnnz 11264 . . 3 ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ ↔ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
212168, 210, 211sylanbrc 695 . 2 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
213 prmnn 15226 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
214213ad2antrl 760 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℕ)
215214nnred 10912 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℝ)
216168adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
217216zred 11358 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℝ)
218 peano2zm 11297 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2198, 218syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) ∈ ℤ)
220219zred 11358 . . . . . . . . 9 (𝜑 → (𝑀 − 1) ∈ ℝ)
221220adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℝ)
222 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
223 prmz 15227 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
224223ad2antrl 760 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℤ)
225212adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
226 dvdsle 14870 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
227224, 225, 226syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
228222, 227mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
229 zsqcl 12796 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
2308, 229syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℤ)
231230zred 11358 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ)
232231rehalfcld 11156 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
23316zred 11358 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶↑2) ∈ ℝ)
23422zred 11358 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷↑2) ∈ ℝ)
235233, 234readdcld 9948 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℝ)
236 1red 9934 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
23750nnsqcld 12891 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ)
238237nnred 10912 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℝ)
239161nn0ge0d 11231 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
240237nnge1d 10940 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ ((𝐶 gcd 𝐷)↑2))
241236, 238, 171, 239, 240lemul1ad 10842 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) ≤ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
242161nn0cnd 11230 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
243242mulid2d 9937 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) = ((𝐸↑2) + (𝐹↑2)))
244241, 243, 953brtr3d 4614 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝐶↑2) + (𝐷↑2)))
245232rehalfcld 11156 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
24611, 5, 124sqlem7 15486 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) ≤ (((𝑀↑2) / 2) / 2))
24717, 5, 184sqlem7 15486 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷↑2) ≤ (((𝑀↑2) / 2) / 2))
248233, 234, 245, 245, 246, 247le2addd 10525 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
249232recnd 9947 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
2502492halvesd 11155 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
251248, 250breqtrd 4609 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((𝑀↑2) / 2))
252171, 235, 232, 244, 251letrd 10073 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
2535nnsqcld 12891 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℕ)
254253nnrpd 11746 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ+)
255 rphalflt 11736 . . . . . . . . . . . . . 14 ((𝑀↑2) ∈ ℝ+ → ((𝑀↑2) / 2) < (𝑀↑2))
256254, 255syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) < (𝑀↑2))
257171, 232, 231, 252, 256lelttrd 10074 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀↑2))
2588zcnd 11359 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
259258sqvald 12867 . . . . . . . . . . . 12 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
260257, 259breqtrd 4609 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))
261 ltdivmul 10777 . . . . . . . . . . . 12 ((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
262171, 172, 172, 209, 261syl112anc 1322 . . . . . . . . . . 11 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
263260, 262mpbird 246 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀)
264 zltlem1 11307 . . . . . . . . . . 11 (((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
265168, 8, 264syl2anc 691 . . . . . . . . . 10 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
266263, 265mpbid 221 . . . . . . . . 9 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
267266adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
268215, 217, 221, 228, 267letrd 10073 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (𝑀 − 1))
269219adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℤ)
270 fznn 12278 . . . . . . . 8 ((𝑀 − 1) ∈ ℤ → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
271269, 270syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
272214, 268, 271mpbir2and 959 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ (1...(𝑀 − 1)))
273206adantr 480 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
274272, 273jca 553 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌))
27548adantr 480 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
276 dvdsmul2 14842 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
2778, 168, 276syl2anc 691 . . . . . . . 8 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
278242, 258, 111divcan2d 10682 . . . . . . . 8 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) = ((𝐸↑2) + (𝐹↑2)))
279277, 278breqtrd 4609 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
280279adantr 480 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
281162adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
282 dvdstr 14856 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
283224, 216, 281, 282syl3anc 1318 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
284222, 280, 283mp2and 711 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))
285 breq1 4586 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑎𝑝𝑎))
286 eleq1 2676 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑆𝑝𝑆))
287285, 286imbi12d 333 . . . . . 6 (𝑏 = 𝑝 → ((𝑏𝑎𝑏𝑆) ↔ (𝑝𝑎𝑝𝑆)))
288 breq2 4587 . . . . . . 7 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → (𝑝𝑎𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
289288imbi1d 330 . . . . . 6 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → ((𝑝𝑎𝑝𝑆) ↔ (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
290287, 289rspc2v 3293 . . . . 5 ((𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) → (∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
291274, 275, 284, 290syl3c 64 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝𝑆)
292291expr 641 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
293292ralrimiva 2949 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
294 inss1 3795 . . . . 5 (𝑆 ∩ ℕ) ⊆ 𝑆
295173, 294sstri 3577 . . . 4 𝑌𝑆
296295, 206sseldi 3566 . . 3 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑆)
297278, 296eqeltrd 2688 . 2 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) ∈ 𝑆)
2981, 5, 212, 293, 2972sqlem6 24948 1 (𝜑𝑀𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  cin 3539   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197   mod cmo 12530  cexp 12722  abscabs 13822  cdvds 14821   gcd cgcd 15054  cprime 15223  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-gz 15472
This theorem is referenced by:  2sqlem9  24952
  Copyright terms: Public domain W3C validator