Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcddvds Structured version   Visualization version   GIF version

Theorem gcddvds 15063
 Description: The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcddvds ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))

Proof of Theorem gcddvds
Dummy variables 𝑛 𝐾 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 11265 . . . . . 6 0 ∈ ℤ
2 dvds0 14835 . . . . . 6 (0 ∈ ℤ → 0 ∥ 0)
31, 2ax-mp 5 . . . . 5 0 ∥ 0
4 breq2 4587 . . . . . . 7 (𝑀 = 0 → (0 ∥ 𝑀 ↔ 0 ∥ 0))
5 breq2 4587 . . . . . . 7 (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0))
64, 5bi2anan9 913 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ (0 ∥ 0 ∧ 0 ∥ 0)))
7 anidm 674 . . . . . 6 ((0 ∥ 0 ∧ 0 ∥ 0) ↔ 0 ∥ 0)
86, 7syl6bb 275 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ 0 ∥ 0))
93, 8mpbiri 247 . . . 4 ((𝑀 = 0 ∧ 𝑁 = 0) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
10 oveq12 6558 . . . . . . 7 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
11 gcd0val 15057 . . . . . . 7 (0 gcd 0) = 0
1210, 11syl6eq 2660 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = 0)
1312breq1d 4593 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ 0 ∥ 𝑀))
1412breq1d 4593 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ 0 ∥ 𝑁))
1513, 14anbi12d 743 . . . 4 ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
169, 15mpbird 246 . . 3 ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1716adantl 481 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
18 eqid 2610 . . . . 5 {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛𝑧} = {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛𝑧}
19 eqid 2610 . . . . 5 {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}
2018, 19gcdcllem3 15061 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∈ ℕ ∧ (sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))))
2120simp2d 1067 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑁))
22 gcdn0val 15058 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
2322breq1d 4593 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑀))
2422breq1d 4593 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑁))
2523, 24anbi12d 743 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑁)))
2621, 25mpbird 246 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
2717, 26pm2.61dan 828 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  {cpr 4127   class class class wbr 4583  (class class class)co 6549  supcsup 8229  ℝcr 9814  0cc0 9815   < clt 9953   ≤ cle 9954  ℕcn 10897  ℤcz 11254   ∥ cdvds 14821   gcd cgcd 15054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055 This theorem is referenced by:  zeqzmulgcd  15070  divgcdz  15071  divgcdnn  15074  gcd0id  15078  gcdneg  15081  gcdaddmlem  15083  gcd1  15087  bezoutlem4  15097  dvdsgcdb  15100  dfgcd2  15101  mulgcd  15103  gcdzeq  15109  dvdsmulgcd  15112  sqgcd  15116  dvdssqlem  15117  bezoutr  15119  gcddvdslcm  15153  lcmgcdlem  15157  lcmgcdeq  15163  coprmgcdb  15200  mulgcddvds  15207  rpmulgcd2  15208  qredeu  15210  rpdvds  15212  divgcdcoprm0  15217  divgcdodd  15260  coprm  15261  rpexp  15270  divnumden  15294  phimullem  15322  hashgcdlem  15331  hashgcdeq  15332  phisum  15333  pythagtriplem4  15362  pythagtriplem19  15376  pcgcd1  15419  pc2dvds  15421  pockthlem  15447  odmulg  17796  odadd1  18074  odadd2  18075  znunit  19731  znrrg  19733  dvdsmulf1o  24720  2sqlem8  24951  2sqcoprm  28978  qqhval2lem  29353  goldbachthlem2  39996  divgcdoddALTV  40131
 Copyright terms: Public domain W3C validator