MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Visualization version   GIF version

Theorem 2sqlem6 24948
Description: Lemma for 2sq 24955. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem6.1 (𝜑𝐴 ∈ ℕ)
2sqlem6.2 (𝜑𝐵 ∈ ℕ)
2sqlem6.3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
2sqlem6.4 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
Assertion
Ref Expression
2sqlem6 (𝜑𝐴𝑆)
Distinct variable groups:   𝑤,𝑝   𝜑,𝑝   𝐵,𝑝   𝑆,𝑝
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑝)   𝐵(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem6
Dummy variables 𝑛 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2 (𝜑𝐴 ∈ ℕ)
2 2sqlem6.2 . . 3 (𝜑𝐵 ∈ ℕ)
3 2sqlem6.3 . . 3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
4 breq2 4587 . . . . . . 7 (𝑥 = 1 → (𝑝𝑥𝑝 ∥ 1))
54imbi1d 330 . . . . . 6 (𝑥 = 1 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ 1 → 𝑝𝑆)))
65ralbidv 2969 . . . . 5 (𝑥 = 1 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆)))
7 oveq2 6557 . . . . . . . 8 (𝑥 = 1 → (𝑚 · 𝑥) = (𝑚 · 1))
87eleq1d 2672 . . . . . . 7 (𝑥 = 1 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 1) ∈ 𝑆))
98imbi1d 330 . . . . . 6 (𝑥 = 1 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
109ralbidv 2969 . . . . 5 (𝑥 = 1 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
116, 10imbi12d 333 . . . 4 (𝑥 = 1 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))))
12 breq2 4587 . . . . . . 7 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
1312imbi1d 330 . . . . . 6 (𝑥 = 𝑦 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑦𝑝𝑆)))
1413ralbidv 2969 . . . . 5 (𝑥 = 𝑦 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆)))
15 oveq2 6557 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 · 𝑥) = (𝑚 · 𝑦))
1615eleq1d 2672 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑦) ∈ 𝑆))
1716imbi1d 330 . . . . . 6 (𝑥 = 𝑦 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1817ralbidv 2969 . . . . 5 (𝑥 = 𝑦 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1914, 18imbi12d 333 . . . 4 (𝑥 = 𝑦 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆))))
20 breq2 4587 . . . . . . 7 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
2120imbi1d 330 . . . . . 6 (𝑥 = 𝑧 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑧𝑝𝑆)))
2221ralbidv 2969 . . . . 5 (𝑥 = 𝑧 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
23 oveq2 6557 . . . . . . . 8 (𝑥 = 𝑧 → (𝑚 · 𝑥) = (𝑚 · 𝑧))
2423eleq1d 2672 . . . . . . 7 (𝑥 = 𝑧 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
2524imbi1d 330 . . . . . 6 (𝑥 = 𝑧 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2625ralbidv 2969 . . . . 5 (𝑥 = 𝑧 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2722, 26imbi12d 333 . . . 4 (𝑥 = 𝑧 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
28 breq2 4587 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
2928imbi1d 330 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
3029ralbidv 2969 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
31 oveq2 6557 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑚 · 𝑥) = (𝑚 · (𝑦 · 𝑧)))
3231eleq1d 2672 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
3332imbi1d 330 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3433ralbidv 2969 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3530, 34imbi12d 333 . . . 4 (𝑥 = (𝑦 · 𝑧) → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
36 breq2 4587 . . . . . . 7 (𝑥 = 𝐵 → (𝑝𝑥𝑝𝐵))
3736imbi1d 330 . . . . . 6 (𝑥 = 𝐵 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝐵𝑝𝑆)))
3837ralbidv 2969 . . . . 5 (𝑥 = 𝐵 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆)))
39 oveq2 6557 . . . . . . . 8 (𝑥 = 𝐵 → (𝑚 · 𝑥) = (𝑚 · 𝐵))
4039eleq1d 2672 . . . . . . 7 (𝑥 = 𝐵 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝐵) ∈ 𝑆))
4140imbi1d 330 . . . . . 6 (𝑥 = 𝐵 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4241ralbidv 2969 . . . . 5 (𝑥 = 𝐵 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4338, 42imbi12d 333 . . . 4 (𝑥 = 𝐵 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))))
44 nncn 10905 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4544mulid1d 9936 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑚 · 1) = 𝑚)
4645eleq1d 2672 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4746biimpd 218 . . . . . 6 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4847rgen 2906 . . . . 5 𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)
4948a1i 11 . . . 4 (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
50 breq1 4586 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
51 eleq1 2676 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
5250, 51imbi12d 333 . . . . . 6 (𝑝 = 𝑥 → ((𝑝𝑥𝑝𝑆) ↔ (𝑥𝑥𝑥𝑆)))
5352rspcv 3278 . . . . 5 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → (𝑥𝑥𝑥𝑆)))
54 prmz 15227 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
55 iddvds 14833 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥𝑥)
5654, 55syl 17 . . . . . 6 (𝑥 ∈ ℙ → 𝑥𝑥)
57 2sq.1 . . . . . . . . . 10 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
58 simprl 790 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚 ∈ ℕ)
59 simpll 786 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥 ∈ ℙ)
60 simprr 792 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → (𝑚 · 𝑥) ∈ 𝑆)
61 simplr 788 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥𝑆)
6257, 58, 59, 60, 612sqlem5 24947 . . . . . . . . 9 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚𝑆)
6362expr 641 . . . . . . . 8 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6463ralrimiva 2949 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6564ex 449 . . . . . 6 (𝑥 ∈ ℙ → (𝑥𝑆 → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6656, 65embantd 57 . . . . 5 (𝑥 ∈ ℙ → ((𝑥𝑥𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6753, 66syld 46 . . . 4 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
68 prth 593 . . . . 5 (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
69 simpr 476 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
70 eluzelz 11573 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
7170ad2antrr 758 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
72 eluzelz 11573 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
7372ad2antlr 759 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
74 euclemma 15263 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7569, 71, 73, 74syl3anc 1318 . . . . . . . . . . . . 13 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7675imbi1d 330 . . . . . . . . . . . 12 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑧) → 𝑝𝑆)))
77 jaob 818 . . . . . . . . . . . 12 (((𝑝𝑦𝑝𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)))
7876, 77syl6bb 275 . . . . . . . . . . 11 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
7978ralbidva 2968 . . . . . . . . . 10 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
80 r19.26 3046 . . . . . . . . . 10 (∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
8179, 80syl6bb 275 . . . . . . . . 9 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆))))
8281biimpa 500 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
83 oveq1 6556 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 · 𝑦) = (𝑛 · 𝑦))
8483eleq1d 2672 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 · 𝑦) ∈ 𝑆 ↔ (𝑛 · 𝑦) ∈ 𝑆))
85 eleq1 2676 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚𝑆𝑛𝑆))
8684, 85imbi12d 333 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)))
8786cbvralv 3147 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
8844adantl 481 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
89 uzssz 11583 . . . . . . . . . . . . . . . . 17 (ℤ‘2) ⊆ ℤ
90 zsscn 11262 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℂ
9189, 90sstri 3577 . . . . . . . . . . . . . . . 16 (ℤ‘2) ⊆ ℂ
92 simpll 786 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑦 ∈ (ℤ‘2))
9392ad2antrr 758 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ (ℤ‘2))
9491, 93sseldi 3566 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℂ)
95 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑧 ∈ (ℤ‘2))
9695ad2antrr 758 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ (ℤ‘2))
9791, 96sseldi 3566 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℂ)
98 mul32 10082 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = ((𝑚 · 𝑧) · 𝑦))
99 mulass 9903 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = (𝑚 · (𝑦 · 𝑧)))
10098, 99eqtr3d 2646 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
10188, 94, 97, 100syl3anc 1318 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
102101eleq1d 2672 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
103 simpr 476 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104 eluz2nn 11602 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
10596, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℕ)
106103, 105nnmulcld 10945 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑧) ∈ ℕ)
107 simplr 788 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
108 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 · 𝑧) → (𝑛 · 𝑦) = ((𝑚 · 𝑧) · 𝑦))
109108eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → ((𝑛 · 𝑦) ∈ 𝑆 ↔ ((𝑚 · 𝑧) · 𝑦) ∈ 𝑆))
110 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → (𝑛𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
111109, 110imbi12d 333 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 · 𝑧) → (((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) ↔ (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
112111rspcv 3278 . . . . . . . . . . . . . 14 ((𝑚 · 𝑧) ∈ ℕ → (∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
113106, 107, 112sylc 63 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
114102, 113sylbird 249 . . . . . . . . . . . 12 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
115114imim1d 80 . . . . . . . . . . 11 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
116115ralimdva 2945 . . . . . . . . . 10 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11787, 116sylan2b 491 . . . . . . . . 9 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
118117expimpd 627 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → ((∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11982, 118embantd 57 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
120119ex 449 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
121120com23 84 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12268, 121syl5 33 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12311, 19, 27, 35, 43, 49, 67, 122prmind 15237 . . 3 (𝐵 ∈ ℕ → (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
1242, 3, 123sylc 63 . 2 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))
125 2sqlem6.4 . 2 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
126 oveq1 6556 . . . . 5 (𝑚 = 𝐴 → (𝑚 · 𝐵) = (𝐴 · 𝐵))
127126eleq1d 2672 . . . 4 (𝑚 = 𝐴 → ((𝑚 · 𝐵) ∈ 𝑆 ↔ (𝐴 · 𝐵) ∈ 𝑆))
128 eleq1 2676 . . . 4 (𝑚 = 𝐴 → (𝑚𝑆𝐴𝑆))
129127, 128imbi12d 333 . . 3 (𝑚 = 𝐴 → (((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) ↔ ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
130129rspcv 3278 . 2 (𝐴 ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) → ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
1311, 124, 125, 130syl3c 64 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   · cmul 9820  cn 10897  2c2 10947  cz 11254  cuz 11563  cexp 12722  abscabs 13822  cdvds 14821  cprime 15223  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-gz 15472
This theorem is referenced by:  2sqlem8  24951
  Copyright terms: Public domain W3C validator