MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Unicode version

Theorem 2sqlem8 23773
Description: Lemma for 2sq 23777. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.e  |-  E  =  ( C  /  ( C  gcd  D ) )
2sqlem8.f  |-  F  =  ( D  /  ( C  gcd  D ) )
Assertion
Ref Expression
2sqlem8  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    E, a, x, y, z    x, N, y, z    Y, a, b, x, y    F, a, x, y, z
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    E( w, b)    F( w, b)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem8.m . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 11180 . . . 4  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 196 . . 3  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 459 . 2  |-  ( ph  ->  M  e.  NN )
6 2sqlem9.7 . . . . . . 7  |-  ( ph  ->  M  ||  N )
7 eluzelz 11115 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
82, 7syl 16 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
9 2sqlem8.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
109nnzd 10989 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
11 2sqlem8.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
12 2sqlem8.c . . . . . . . . . . . 12  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1311, 5, 124sqlem5 14472 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
1413simpld 459 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
15 zsqcl 12241 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
1614, 15syl 16 . . . . . . . . 9  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
17 2sqlem8.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
18 2sqlem8.d . . . . . . . . . . . 12  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1917, 5, 184sqlem5 14472 . . . . . . . . . . 11  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
2019simpld 459 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
21 zsqcl 12241 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
2220, 21syl 16 . . . . . . . . 9  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
2316, 22zaddcld 10994 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
2411, 5, 124sqlem8 14475 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( C ^
2 ) ) )
2517, 5, 184sqlem8 14475 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( B ^ 2 )  -  ( D ^
2 ) ) )
26 zsqcl 12241 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
2711, 26syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
2827, 16zsubcld 10995 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ )
29 zsqcl 12241 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
3017, 29syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
3130, 22zsubcld 10995 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  -  ( D ^ 2 ) )  e.  ZZ )
32 dvds2add 14027 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ  /\  (
( B ^ 2 )  -  ( D ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( A ^
2 )  -  ( C ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( D ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) ) )
338, 28, 31, 32syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  ||  ( ( A ^
2 )  -  ( C ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( D ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) ) )
3424, 25, 33mp2and 679 . . . . . . . . 9  |-  ( ph  ->  M  ||  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
35 2sqlem8.4 . . . . . . . . . . 11  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
3635oveq1d 6311 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
3727zcnd 10991 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
3830zcnd 10991 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
3916zcnd 10991 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
4022zcnd 10991 . . . . . . . . . . 11  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
4137, 38, 39, 40addsub4d 9997 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4236, 41eqtrd 2498 . . . . . . . . 9  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4334, 42breqtrrd 4482 . . . . . . . 8  |-  ( ph  ->  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
44 dvdssub2 14035 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )  /\  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )  ->  ( M  ||  N 
<->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
458, 10, 23, 43, 44syl31anc 1231 . . . . . . 7  |-  ( ph  ->  ( M  ||  N  <->  M 
||  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
466, 45mpbid 210 . . . . . 6  |-  ( ph  ->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
47 2sqlem7.2 . . . . . . . . . . . 12  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
48 2sqlem9.5 . . . . . . . . . . . 12  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
49 2sqlem8.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
501, 47, 48, 6, 9, 2, 11, 17, 49, 35, 12, 182sqlem8a 23772 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
5150nnzd 10989 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  ZZ )
52 zsqcl2 12248 . . . . . . . . . 10  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  NN0 )
5351, 52syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN0 )
5453nn0cnd 10875 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  CC )
55 2sqlem8.e . . . . . . . . . . 11  |-  E  =  ( C  /  ( C  gcd  D ) )
56 gcddvds 14165 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5714, 20, 56syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5857simpld 459 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  C )
5950nnne0d 10601 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  gcd  D
)  =/=  0 )
60 dvdsval2 14001 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  C  e.  ZZ )  ->  (
( C  gcd  D
)  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6151, 59, 14, 60syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6258, 61mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( C  /  ( C  gcd  D ) )  e.  ZZ )
6355, 62syl5eqel 2549 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
64 zsqcl2 12248 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
6563, 64syl 16 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
6665nn0cnd 10875 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
67 2sqlem8.f . . . . . . . . . . 11  |-  F  =  ( D  /  ( C  gcd  D ) )
6857simprd 463 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  D )
69 dvdsval2 14001 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  D  e.  ZZ )  ->  (
( C  gcd  D
)  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
7051, 59, 20, 69syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
7168, 70mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( D  /  ( C  gcd  D ) )  e.  ZZ )
7267, 71syl5eqel 2549 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
73 zsqcl2 12248 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
7472, 73syl 16 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
7574nn0cnd 10875 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
7654, 66, 75adddid 9637 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^
2 ) )  +  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) ) ) )
7751zcnd 10991 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  CC )
7863zcnd 10991 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
7977, 78sqmuld 12325 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( E ^
2 ) ) )
8055oveq2i 6307 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  E )  =  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )
8114zcnd 10991 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
8281, 77, 59divcan2d 10343 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )  =  C )
8380, 82syl5eq 2510 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  E )  =  C )
8483oveq1d 6311 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( C ^ 2 ) )
8579, 84eqtr3d 2500 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( E ^ 2 ) )  =  ( C ^
2 ) )
8672zcnd 10991 . . . . . . . . . 10  |-  ( ph  ->  F  e.  CC )
8777, 86sqmuld 12325 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( F ^
2 ) ) )
8867oveq2i 6307 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  F )  =  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )
8920zcnd 10991 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  CC )
9089, 77, 59divcan2d 10343 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )  =  D )
9188, 90syl5eq 2510 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  F )  =  D )
9291oveq1d 6311 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( D ^ 2 ) )
9387, 92eqtr3d 2500 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) )  =  ( D ^
2 ) )
9485, 93oveq12d 6314 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^ 2 ) )  +  ( ( ( C  gcd  D ) ^ 2 )  x.  ( F ^
2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
9576, 94eqtrd 2498 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
9646, 95breqtrrd 4482 . . . . 5  |-  ( ph  ->  M  ||  ( ( ( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
97 zsqcl 12241 . . . . . . . 8  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  ZZ )
9851, 97syl 16 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )
99 gcdcom 14170 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )  -> 
( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
1008, 98, 99syl2anc 661 . . . . . 6  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
101 gcddvds 14165 . . . . . . . . . . . . . 14  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
10251, 8, 101syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
103102simpld 459 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( C  gcd  D ) )
10451, 8gcdcld 14168 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN0 )
105104nn0zd 10988 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  ZZ )
106 dvdstr 14030 . . . . . . . . . . . . 13  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  ( C  gcd  D )  e.  ZZ  /\  C  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( C  gcd  D ) 
||  C )  -> 
( ( C  gcd  D )  gcd  M ) 
||  C ) )
107105, 51, 14, 106syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  ( C  gcd  D )  /\  ( C  gcd  D )  ||  C )  ->  ( ( C  gcd  D )  gcd 
M )  ||  C
) )
108103, 58, 107mp2and 679 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  C )
109102simprd 463 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  M )
11013simprd 463 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  -  C )  /  M
)  e.  ZZ )
1115nnne0d 10601 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  =/=  0 )
11211, 14zsubcld 10995 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  C
)  e.  ZZ )
113 dvdsval2 14001 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( A  -  C )  e.  ZZ )  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C )  /  M )  e.  ZZ ) )
1148, 111, 112, 113syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C
)  /  M )  e.  ZZ ) )
115110, 114mpbird 232 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( A  -  C ) )
116 dvdstr 14030 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  M  e.  ZZ  /\  ( A  -  C )  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  M  /\  M  ||  ( A  -  C ) )  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( A  -  C )
) )
117105, 8, 112, 116syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  M  /\  M  ||  ( A  -  C )
)  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( A  -  C )
) )
118109, 115, 117mp2and 679 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )
119 dvdssub2 14035 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  C  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
120105, 11, 14, 118, 119syl31anc 1231 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
121108, 120mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  A )
122 dvdstr 14030 . . . . . . . . . . . . 13  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  ( C  gcd  D )  e.  ZZ  /\  D  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( C  gcd  D ) 
||  D )  -> 
( ( C  gcd  D )  gcd  M ) 
||  D ) )
123105, 51, 20, 122syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  ( C  gcd  D )  /\  ( C  gcd  D )  ||  D )  ->  ( ( C  gcd  D )  gcd 
M )  ||  D
) )
124103, 68, 123mp2and 679 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  D )
12519simprd 463 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  -  D )  /  M
)  e.  ZZ )
12617, 20zsubcld 10995 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  D
)  e.  ZZ )
127 dvdsval2 14001 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( B  -  D )  e.  ZZ )  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D )  /  M )  e.  ZZ ) )
1288, 111, 126, 127syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D
)  /  M )  e.  ZZ ) )
129125, 128mpbird 232 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( B  -  D ) )
130 dvdstr 14030 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  M  e.  ZZ  /\  ( B  -  D )  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  M  /\  M  ||  ( B  -  D ) )  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( B  -  D )
) )
131105, 8, 126, 130syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  M  /\  M  ||  ( B  -  D )
)  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( B  -  D )
) )
132109, 129, 131mp2and 679 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )
133 dvdssub2 14035 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
134105, 17, 20, 132, 133syl31anc 1231 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
135124, 134mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  B )
136 ax-1ne0 9578 . . . . . . . . . . . . . . 15  |-  1  =/=  0
137136a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  =/=  0 )
13849, 137eqnetrd 2750 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
139138neneqd 2659 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
140 gcdeq0 14171 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
14111, 17, 140syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
142139, 141mtbid 300 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
143 dvdslegcd 14166 . . . . . . . . . . 11  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
144105, 11, 17, 142, 143syl31anc 1231 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
145121, 135, 144mp2and 679 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  ( A  gcd  B ) )
146145, 49breqtrd 4480 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  1 )
147 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( C  gcd  D
)  =  0  /\  M  =  0 )  ->  M  =  0 )
148147necon3ai 2685 . . . . . . . . . . 11  |-  ( M  =/=  0  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
149111, 148syl 16 . . . . . . . . . 10  |-  ( ph  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
150 gcdn0cl 14164 . . . . . . . . . 10  |-  ( ( ( ( C  gcd  D )  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )  -> 
( ( C  gcd  D )  gcd  M )  e.  NN )
15151, 8, 149, 150syl21anc 1227 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN )
152 nnle1eq1 10584 . . . . . . . . 9  |-  ( ( ( C  gcd  D
)  gcd  M )  e.  NN  ->  ( (
( C  gcd  D
)  gcd  M )  <_  1  <->  ( ( C  gcd  D )  gcd 
M )  =  1 ) )
153151, 152syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  <_  1  <->  ( ( C  gcd  D
)  gcd  M )  =  1 ) )
154146, 153mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  =  1 )
155 2nn 10714 . . . . . . . . 9  |-  2  e.  NN
156155a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
157 rplpwr 14206 . . . . . . . 8  |-  ( ( ( C  gcd  D
)  e.  NN  /\  M  e.  NN  /\  2  e.  NN )  ->  (
( ( C  gcd  D )  gcd  M )  =  1  ->  (
( ( C  gcd  D ) ^ 2 )  gcd  M )  =  1 ) )
15850, 5, 156, 157syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  =  1  ->  ( ( ( C  gcd  D ) ^ 2 )  gcd 
M )  =  1 ) )
159154, 158mpd 15 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  gcd  M
)  =  1 )
160100, 159eqtrd 2498 . . . . 5  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  1 )
16165, 74nn0addcld 10877 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
162161nn0zd 10988 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )
163 coprmdvds 14255 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
1648, 98, 162, 163syl3anc 1228 . . . . 5  |-  ( ph  ->  ( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
16596, 160, 164mp2and 679 . . . 4  |-  ( ph  ->  M  ||  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
166 dvdsval2 14001 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
1678, 111, 162, 166syl3anc 1228 . . . 4  |-  ( ph  ->  ( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
168165, 167mpbid 210 . . 3  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )
16965nn0red 10874 . . . . 5  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
17074nn0red 10874 . . . . 5  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
171169, 170readdcld 9640 . . . 4  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
1725nnred 10571 . . . 4  |-  ( ph  ->  M  e.  RR )
1731, 472sqlem7 23771 . . . . . . 7  |-  Y  C_  ( S  i^i  NN )
174 inss2 3715 . . . . . . 7  |-  ( S  i^i  NN )  C_  NN
175173, 174sstri 3508 . . . . . 6  |-  Y  C_  NN
17663, 72gcdcld 14168 . . . . . . . . . 10  |-  ( ph  ->  ( E  gcd  F
)  e.  NN0 )
177176nn0cnd 10875 . . . . . . . . 9  |-  ( ph  ->  ( E  gcd  F
)  e.  CC )
178 1cnd 9629 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
17977mulid1d 9630 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  1 )  =  ( C  gcd  D ) )
18083, 91oveq12d 6314 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( C  gcd  D ) )
18114, 20gcdcld 14168 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN0 )
182 mulgcd 14196 . . . . . . . . . . 11  |-  ( ( ( C  gcd  D
)  e.  NN0  /\  E  e.  ZZ  /\  F  e.  ZZ )  ->  (
( ( C  gcd  D )  x.  E )  gcd  ( ( C  gcd  D )  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
183181, 63, 72, 182syl3anc 1228 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
184179, 180, 1833eqtr2rd 2505 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( E  gcd  F ) )  =  ( ( C  gcd  D )  x.  1 ) )
185177, 178, 77, 59, 184mulcanad 10205 . . . . . . . 8  |-  ( ph  ->  ( E  gcd  F
)  =  1 )
186 eqidd 2458 . . . . . . . 8  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
187 oveq1 6303 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
x  gcd  y )  =  ( E  gcd  y ) )
188187eqeq1d 2459 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( x  gcd  y
)  =  1  <->  ( E  gcd  y )  =  1 ) )
189 oveq1 6303 . . . . . . . . . . . 12  |-  ( x  =  E  ->  (
x ^ 2 )  =  ( E ^
2 ) )
190189oveq1d 6311 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )
191190eqeq2d 2471 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) ) )
192188, 191anbi12d 710 . . . . . . . . 9  |-  ( x  =  E  ->  (
( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( y ^ 2 ) ) ) ) )
193 oveq2 6304 . . . . . . . . . . 11  |-  ( y  =  F  ->  ( E  gcd  y )  =  ( E  gcd  F
) )
194193eqeq1d 2459 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( E  gcd  y
)  =  1  <->  ( E  gcd  F )  =  1 ) )
195 oveq1 6303 . . . . . . . . . . . 12  |-  ( y  =  F  ->  (
y ^ 2 )  =  ( F ^
2 ) )
196195oveq2d 6312 . . . . . . . . . . 11  |-  ( y  =  F  ->  (
( E ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
197196eqeq2d 2471 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
198194, 197anbi12d 710 . . . . . . . . 9  |-  ( y  =  F  ->  (
( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  F )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) ) )
199192, 198rspc2ev 3221 . . . . . . . 8  |-  ( ( E  e.  ZZ  /\  F  e.  ZZ  /\  (
( E  gcd  F
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
20063, 72, 185, 186, 199syl112anc 1232 . . . . . . 7  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
201 ovex 6324 . . . . . . . 8  |-  ( ( E ^ 2 )  +  ( F ^
2 ) )  e. 
_V
202 eqeq1 2461 . . . . . . . . . 10  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
203202anbi2d 703 . . . . . . . . 9  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
2042032rexbidv 2975 . . . . . . . 8  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
205201, 204, 47elab2 3249 . . . . . . 7  |-  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
206200, 205sylibr 212 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )
207175, 206sseldi 3497 . . . . 5  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN )
208207nngt0d 10600 . . . 4  |-  ( ph  ->  0  <  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
2095nngt0d 10600 . . . 4  |-  ( ph  ->  0  <  M )
210171, 172, 208, 209divgt0d 10501 . . 3  |-  ( ph  ->  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) )
211 elnnz 10895 . . 3  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN  <->  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ  /\  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
212168, 210, 211sylanbrc 664 . 2  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )
213 prmnn 14232 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  NN )
214213ad2antrl 727 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  NN )
215214nnred 10571 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  RR )
216168adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ )
217216zred 10990 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  RR )
218 peano2zm 10928 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2198, 218syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
220219zred 10990 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  e.  RR )
221220adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  RR )
222 simprr 757 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
223 prmz 14233 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  ZZ )
224223ad2antrl 727 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ZZ )
225212adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN )
226 dvdsle 14043 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  <_  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )
227224, 225, 226syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  ||  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M ) ) )
228222, 227mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
229 zsqcl 12241 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
2308, 229syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  ZZ )
231230zred 10990 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
232231rehalfcld 10806 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
23316zred 10990 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C ^ 2 )  e.  RR )
23422zred 10990 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D ^ 2 )  e.  RR )
235233, 234readdcld 9640 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  RR )
236 1red 9628 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
23750nnsqcld 12333 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN )
238237nnred 10571 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  RR )
239161nn0ge0d 10876 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
240237nnge1d 10599 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  <_  ( ( C  gcd  D ) ^
2 ) )
241236, 238, 171, 239, 240lemul1ad 10505 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  <_  ( (
( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
242161nn0cnd 10875 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
243242mulid2d 9631 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
244241, 243, 953brtr3d 4485 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
245232rehalfcld 10806 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
24611, 5, 124sqlem7 14474 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
24717, 5, 184sqlem7 14474 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
248233, 234, 245, 245, 246, 247le2addd 10191 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
249232recnd 9639 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
2502492halvesd 10805 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
251248, 250breqtrd 4480 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
252171, 235, 232, 244, 251letrd 9756 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
2535nnsqcld 12333 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  NN )
254253nnrpd 11280 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR+ )
255 rphalflt 11271 . . . . . . . . . . . . . 14  |-  ( ( M ^ 2 )  e.  RR+  ->  ( ( M ^ 2 )  /  2 )  < 
( M ^ 2 ) )
256254, 255syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  <  ( M ^ 2 ) )
257171, 232, 231, 252, 256lelttrd 9757 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M ^ 2 ) )
2588zcnd 10991 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  CC )
259258sqvald 12310 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
260257, 259breqtrd 4480 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) )
261 ltdivmul 10438 . . . . . . . . . . . 12  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR  /\  M  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  -> 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
262171, 172, 172, 209, 261syl112anc 1232 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
263260, 262mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <  M )
264 zltlem1 10937 . . . . . . . . . . 11  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
265168, 8, 264syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
266263, 265mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <_  ( M  -  1 ) )
267266adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) )
268215, 217, 221, 228, 267letrd 9756 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( M  -  1 ) )
269219adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  ZZ )
270 fznn 11773 . . . . . . . 8  |-  ( ( M  -  1 )  e.  ZZ  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
271269, 270syl 16 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
272214, 268, 271mpbir2and 922 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ( 1 ... ( M  -  1 ) ) )
273206adantr 465 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y )
274272, 273jca 532 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y ) )
27548adantr 465 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
276 dvdsmul2 14018 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )  ->  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  ( M  x.  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) ) )
2778, 168, 276syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( M  x.  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
278242, 258, 111divcan2d 10343 . . . . . . . 8  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
279277, 278breqtrd 4480 . . . . . . 7  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
280279adantr 465 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
281162adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )
282 dvdstr 14030 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )  ->  ( ( p 
||  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  /\  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  ->  p  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
283224, 216, 281, 282syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  /\  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  ->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
284222, 280, 283mp2and 679 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) )
285 breq1 4459 . . . . . . 7  |-  ( b  =  p  ->  (
b  ||  a  <->  p  ||  a
) )
286 eleq1 2529 . . . . . . 7  |-  ( b  =  p  ->  (
b  e.  S  <->  p  e.  S ) )
287285, 286imbi12d 320 . . . . . 6  |-  ( b  =  p  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( p  ||  a  ->  p  e.  S ) ) )
288 breq2 4460 . . . . . . 7  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
p  ||  a  <->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
289288imbi1d 317 . . . . . 6  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( p  ||  a  ->  p  e.  S )  <-> 
( p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  ->  p  e.  S
) ) )
290287, 289rspc2v 3219 . . . . 5  |-  ( ( p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )  ->  ( A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  ->  ( p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) )  ->  p  e.  S ) ) )
291274, 275, 284, 290syl3c 61 . . . 4  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  S )
292291expr 615 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  e.  S ) )
293292ralrimiva 2871 . 2  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  e.  S )
)
294 inss1 3714 . . . . 5  |-  ( S  i^i  NN )  C_  S
295173, 294sstri 3508 . . . 4  |-  Y  C_  S
296295, 206sseldi 3497 . . 3  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  S )
297278, 296eqeltrd 2545 . 2  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  e.  S )
2981, 5, 212, 293, 2972sqlem6 23770 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   E.wrex 2808    i^i cin 3470   class class class wbr 4456    |-> cmpt 4515   ran crn 5009   ` cfv 5594  (class class class)co 6296   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697    mod cmo 11999   ^cexp 12169   abscabs 13079    || cdvds 13998    gcd cgcd 14156   Primecprime 14229   ZZ[_i]cgz 14459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-prm 14230  df-gz 14460
This theorem is referenced by:  2sqlem9  23774
  Copyright terms: Public domain W3C validator