MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Visualization version   Unicode version

Theorem 2sqlem8 24300
Description: Lemma for 2sq 24304. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.e  |-  E  =  ( C  /  ( C  gcd  D ) )
2sqlem8.f  |-  F  =  ( D  /  ( C  gcd  D ) )
Assertion
Ref Expression
2sqlem8  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    E, a, x, y, z    x, N, y, z    Y, a, b, x, y    F, a, x, y, z
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    E( w, b)    F( w, b)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem8.m . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 11232 . . . 4  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 200 . . 3  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 461 . 2  |-  ( ph  ->  M  e.  NN )
6 2sqlem9.7 . . . . . . 7  |-  ( ph  ->  M  ||  N )
7 eluzelz 11168 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
82, 7syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
9 2sqlem8.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
109nnzd 11039 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
11 2sqlem8.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
12 2sqlem8.c . . . . . . . . . . . 12  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1311, 5, 124sqlem5 14886 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
1413simpld 461 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
15 zsqcl 12345 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
1614, 15syl 17 . . . . . . . . 9  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
17 2sqlem8.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
18 2sqlem8.d . . . . . . . . . . . 12  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1917, 5, 184sqlem5 14886 . . . . . . . . . . 11  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
2019simpld 461 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
21 zsqcl 12345 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
2220, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
2316, 22zaddcld 11044 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
2411, 5, 124sqlem8 14889 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( C ^
2 ) ) )
2517, 5, 184sqlem8 14889 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( B ^ 2 )  -  ( D ^
2 ) ) )
26 zsqcl 12345 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
2711, 26syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
2827, 16zsubcld 11045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ )
29 zsqcl 12345 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
3017, 29syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
3130, 22zsubcld 11045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  -  ( D ^ 2 ) )  e.  ZZ )
32 dvds2add 14334 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ  /\  (
( B ^ 2 )  -  ( D ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( A ^
2 )  -  ( C ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( D ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) ) )
338, 28, 31, 32syl3anc 1268 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  ||  ( ( A ^
2 )  -  ( C ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( D ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) ) )
3424, 25, 33mp2and 685 . . . . . . . . 9  |-  ( ph  ->  M  ||  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
35 2sqlem8.4 . . . . . . . . . . 11  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
3635oveq1d 6305 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
3727zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
3830zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
3916zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
4022zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
4137, 38, 39, 40addsub4d 10033 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4236, 41eqtrd 2485 . . . . . . . . 9  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4334, 42breqtrrd 4429 . . . . . . . 8  |-  ( ph  ->  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
44 dvdssub2 14342 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )  /\  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )  ->  ( M  ||  N 
<->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
458, 10, 23, 43, 44syl31anc 1271 . . . . . . 7  |-  ( ph  ->  ( M  ||  N  <->  M 
||  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
466, 45mpbid 214 . . . . . 6  |-  ( ph  ->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
47 2sqlem7.2 . . . . . . . . . . . 12  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
48 2sqlem9.5 . . . . . . . . . . . 12  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
49 2sqlem8.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
501, 47, 48, 6, 9, 2, 11, 17, 49, 35, 12, 182sqlem8a 24299 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
5150nnzd 11039 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  ZZ )
52 zsqcl2 12352 . . . . . . . . . 10  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  NN0 )
5351, 52syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN0 )
5453nn0cnd 10927 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  CC )
55 2sqlem8.e . . . . . . . . . . 11  |-  E  =  ( C  /  ( C  gcd  D ) )
56 gcddvds 14477 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5714, 20, 56syl2anc 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5857simpld 461 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  C )
5950nnne0d 10654 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  gcd  D
)  =/=  0 )
60 dvdsval2 14308 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  C  e.  ZZ )  ->  (
( C  gcd  D
)  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6151, 59, 14, 60syl3anc 1268 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6258, 61mpbid 214 . . . . . . . . . . 11  |-  ( ph  ->  ( C  /  ( C  gcd  D ) )  e.  ZZ )
6355, 62syl5eqel 2533 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
64 zsqcl2 12352 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
6563, 64syl 17 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
6665nn0cnd 10927 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
67 2sqlem8.f . . . . . . . . . . 11  |-  F  =  ( D  /  ( C  gcd  D ) )
6857simprd 465 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  D )
69 dvdsval2 14308 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  D  e.  ZZ )  ->  (
( C  gcd  D
)  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
7051, 59, 20, 69syl3anc 1268 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
7168, 70mpbid 214 . . . . . . . . . . 11  |-  ( ph  ->  ( D  /  ( C  gcd  D ) )  e.  ZZ )
7267, 71syl5eqel 2533 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
73 zsqcl2 12352 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
7472, 73syl 17 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
7574nn0cnd 10927 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
7654, 66, 75adddid 9667 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^
2 ) )  +  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) ) ) )
7751zcnd 11041 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  CC )
7863zcnd 11041 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
7977, 78sqmuld 12428 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( E ^
2 ) ) )
8055oveq2i 6301 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  E )  =  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )
8114zcnd 11041 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
8281, 77, 59divcan2d 10385 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )  =  C )
8380, 82syl5eq 2497 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  E )  =  C )
8483oveq1d 6305 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( C ^ 2 ) )
8579, 84eqtr3d 2487 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( E ^ 2 ) )  =  ( C ^
2 ) )
8672zcnd 11041 . . . . . . . . . 10  |-  ( ph  ->  F  e.  CC )
8777, 86sqmuld 12428 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( F ^
2 ) ) )
8867oveq2i 6301 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  F )  =  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )
8920zcnd 11041 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  CC )
9089, 77, 59divcan2d 10385 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )  =  D )
9188, 90syl5eq 2497 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  F )  =  D )
9291oveq1d 6305 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( D ^ 2 ) )
9387, 92eqtr3d 2487 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) )  =  ( D ^
2 ) )
9485, 93oveq12d 6308 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^ 2 ) )  +  ( ( ( C  gcd  D ) ^ 2 )  x.  ( F ^
2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
9576, 94eqtrd 2485 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
9646, 95breqtrrd 4429 . . . . 5  |-  ( ph  ->  M  ||  ( ( ( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
97 zsqcl 12345 . . . . . . . 8  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  ZZ )
9851, 97syl 17 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )
99 gcdcom 14484 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )  -> 
( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
1008, 98, 99syl2anc 667 . . . . . 6  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
101 gcddvds 14477 . . . . . . . . . . . . . 14  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
10251, 8, 101syl2anc 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
103102simpld 461 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( C  gcd  D ) )
10451, 8gcdcld 14482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN0 )
105104nn0zd 11038 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  ZZ )
106 dvdstr 14337 . . . . . . . . . . . . 13  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  ( C  gcd  D )  e.  ZZ  /\  C  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( C  gcd  D ) 
||  C )  -> 
( ( C  gcd  D )  gcd  M ) 
||  C ) )
107105, 51, 14, 106syl3anc 1268 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  ( C  gcd  D )  /\  ( C  gcd  D )  ||  C )  ->  ( ( C  gcd  D )  gcd 
M )  ||  C
) )
108103, 58, 107mp2and 685 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  C )
109102simprd 465 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  M )
11013simprd 465 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  -  C )  /  M
)  e.  ZZ )
1115nnne0d 10654 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  =/=  0 )
11211, 14zsubcld 11045 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  C
)  e.  ZZ )
113 dvdsval2 14308 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( A  -  C )  e.  ZZ )  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C )  /  M )  e.  ZZ ) )
1148, 111, 112, 113syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C
)  /  M )  e.  ZZ ) )
115110, 114mpbird 236 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( A  -  C ) )
116 dvdstr 14337 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  M  e.  ZZ  /\  ( A  -  C )  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  M  /\  M  ||  ( A  -  C ) )  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( A  -  C )
) )
117105, 8, 112, 116syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  M  /\  M  ||  ( A  -  C )
)  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( A  -  C )
) )
118109, 115, 117mp2and 685 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )
119 dvdssub2 14342 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  C  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
120105, 11, 14, 118, 119syl31anc 1271 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
121108, 120mpbird 236 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  A )
122 dvdstr 14337 . . . . . . . . . . . . 13  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  ( C  gcd  D )  e.  ZZ  /\  D  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( C  gcd  D ) 
||  D )  -> 
( ( C  gcd  D )  gcd  M ) 
||  D ) )
123105, 51, 20, 122syl3anc 1268 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  ( C  gcd  D )  /\  ( C  gcd  D )  ||  D )  ->  ( ( C  gcd  D )  gcd 
M )  ||  D
) )
124103, 68, 123mp2and 685 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  D )
12519simprd 465 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  -  D )  /  M
)  e.  ZZ )
12617, 20zsubcld 11045 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  D
)  e.  ZZ )
127 dvdsval2 14308 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( B  -  D )  e.  ZZ )  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D )  /  M )  e.  ZZ ) )
1288, 111, 126, 127syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D
)  /  M )  e.  ZZ ) )
129125, 128mpbird 236 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( B  -  D ) )
130 dvdstr 14337 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  M  e.  ZZ  /\  ( B  -  D )  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  M  /\  M  ||  ( B  -  D ) )  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( B  -  D )
) )
131105, 8, 126, 130syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  M  /\  M  ||  ( B  -  D )
)  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( B  -  D )
) )
132109, 129, 131mp2and 685 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )
133 dvdssub2 14342 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
134105, 17, 20, 132, 133syl31anc 1271 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
135124, 134mpbird 236 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  B )
136 ax-1ne0 9608 . . . . . . . . . . . . . . 15  |-  1  =/=  0
137136a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  =/=  0 )
13849, 137eqnetrd 2691 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
139138neneqd 2629 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
140 gcdeq0 14485 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
14111, 17, 140syl2anc 667 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
142139, 141mtbid 302 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
143 dvdslegcd 14478 . . . . . . . . . . 11  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
144105, 11, 17, 142, 143syl31anc 1271 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
145121, 135, 144mp2and 685 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  ( A  gcd  B ) )
146145, 49breqtrd 4427 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  1 )
147 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( C  gcd  D
)  =  0  /\  M  =  0 )  ->  M  =  0 )
148147necon3ai 2649 . . . . . . . . . . 11  |-  ( M  =/=  0  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
149111, 148syl 17 . . . . . . . . . 10  |-  ( ph  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
150 gcdn0cl 14476 . . . . . . . . . 10  |-  ( ( ( ( C  gcd  D )  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )  -> 
( ( C  gcd  D )  gcd  M )  e.  NN )
15151, 8, 149, 150syl21anc 1267 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN )
152 nnle1eq1 10637 . . . . . . . . 9  |-  ( ( ( C  gcd  D
)  gcd  M )  e.  NN  ->  ( (
( C  gcd  D
)  gcd  M )  <_  1  <->  ( ( C  gcd  D )  gcd 
M )  =  1 ) )
153151, 152syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  <_  1  <->  ( ( C  gcd  D
)  gcd  M )  =  1 ) )
154146, 153mpbid 214 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  =  1 )
155 2nn 10767 . . . . . . . . 9  |-  2  e.  NN
156155a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
157 rplpwr 14524 . . . . . . . 8  |-  ( ( ( C  gcd  D
)  e.  NN  /\  M  e.  NN  /\  2  e.  NN )  ->  (
( ( C  gcd  D )  gcd  M )  =  1  ->  (
( ( C  gcd  D ) ^ 2 )  gcd  M )  =  1 ) )
15850, 5, 156, 157syl3anc 1268 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  =  1  ->  ( ( ( C  gcd  D ) ^ 2 )  gcd 
M )  =  1 ) )
159154, 158mpd 15 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  gcd  M
)  =  1 )
160100, 159eqtrd 2485 . . . . 5  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  1 )
16165, 74nn0addcld 10929 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
162161nn0zd 11038 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )
163 coprmdvds 14659 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
1648, 98, 162, 163syl3anc 1268 . . . . 5  |-  ( ph  ->  ( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
16596, 160, 164mp2and 685 . . . 4  |-  ( ph  ->  M  ||  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
166 dvdsval2 14308 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
1678, 111, 162, 166syl3anc 1268 . . . 4  |-  ( ph  ->  ( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
168165, 167mpbid 214 . . 3  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )
16965nn0red 10926 . . . . 5  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
17074nn0red 10926 . . . . 5  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
171169, 170readdcld 9670 . . . 4  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
1725nnred 10624 . . . 4  |-  ( ph  ->  M  e.  RR )
1731, 472sqlem7 24298 . . . . . . 7  |-  Y  C_  ( S  i^i  NN )
174 inss2 3653 . . . . . . 7  |-  ( S  i^i  NN )  C_  NN
175173, 174sstri 3441 . . . . . 6  |-  Y  C_  NN
17663, 72gcdcld 14482 . . . . . . . . . 10  |-  ( ph  ->  ( E  gcd  F
)  e.  NN0 )
177176nn0cnd 10927 . . . . . . . . 9  |-  ( ph  ->  ( E  gcd  F
)  e.  CC )
178 1cnd 9659 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
17977mulid1d 9660 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  1 )  =  ( C  gcd  D ) )
18083, 91oveq12d 6308 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( C  gcd  D ) )
18114, 20gcdcld 14482 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN0 )
182 mulgcd 14514 . . . . . . . . . . 11  |-  ( ( ( C  gcd  D
)  e.  NN0  /\  E  e.  ZZ  /\  F  e.  ZZ )  ->  (
( ( C  gcd  D )  x.  E )  gcd  ( ( C  gcd  D )  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
183181, 63, 72, 182syl3anc 1268 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
184179, 180, 1833eqtr2rd 2492 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( E  gcd  F ) )  =  ( ( C  gcd  D )  x.  1 ) )
185177, 178, 77, 59, 184mulcanad 10247 . . . . . . . 8  |-  ( ph  ->  ( E  gcd  F
)  =  1 )
186 eqidd 2452 . . . . . . . 8  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
187 oveq1 6297 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
x  gcd  y )  =  ( E  gcd  y ) )
188187eqeq1d 2453 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( x  gcd  y
)  =  1  <->  ( E  gcd  y )  =  1 ) )
189 oveq1 6297 . . . . . . . . . . . 12  |-  ( x  =  E  ->  (
x ^ 2 )  =  ( E ^
2 ) )
190189oveq1d 6305 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )
191190eqeq2d 2461 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) ) )
192188, 191anbi12d 717 . . . . . . . . 9  |-  ( x  =  E  ->  (
( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( y ^ 2 ) ) ) ) )
193 oveq2 6298 . . . . . . . . . . 11  |-  ( y  =  F  ->  ( E  gcd  y )  =  ( E  gcd  F
) )
194193eqeq1d 2453 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( E  gcd  y
)  =  1  <->  ( E  gcd  F )  =  1 ) )
195 oveq1 6297 . . . . . . . . . . . 12  |-  ( y  =  F  ->  (
y ^ 2 )  =  ( F ^
2 ) )
196195oveq2d 6306 . . . . . . . . . . 11  |-  ( y  =  F  ->  (
( E ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
197196eqeq2d 2461 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
198194, 197anbi12d 717 . . . . . . . . 9  |-  ( y  =  F  ->  (
( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  F )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) ) )
199192, 198rspc2ev 3161 . . . . . . . 8  |-  ( ( E  e.  ZZ  /\  F  e.  ZZ  /\  (
( E  gcd  F
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
20063, 72, 185, 186, 199syl112anc 1272 . . . . . . 7  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
201 ovex 6318 . . . . . . . 8  |-  ( ( E ^ 2 )  +  ( F ^
2 ) )  e. 
_V
202 eqeq1 2455 . . . . . . . . . 10  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
203202anbi2d 710 . . . . . . . . 9  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
2042032rexbidv 2908 . . . . . . . 8  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
205201, 204, 47elab2 3188 . . . . . . 7  |-  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
206200, 205sylibr 216 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )
207175, 206sseldi 3430 . . . . 5  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN )
208207nngt0d 10653 . . . 4  |-  ( ph  ->  0  <  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
2095nngt0d 10653 . . . 4  |-  ( ph  ->  0  <  M )
210171, 172, 208, 209divgt0d 10542 . . 3  |-  ( ph  ->  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) )
211 elnnz 10947 . . 3  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN  <->  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ  /\  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
212168, 210, 211sylanbrc 670 . 2  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )
213 prmnn 14625 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  NN )
214213ad2antrl 734 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  NN )
215214nnred 10624 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  RR )
216168adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ )
217216zred 11040 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  RR )
218 peano2zm 10980 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2198, 218syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
220219zred 11040 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  e.  RR )
221220adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  RR )
222 simprr 766 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
223 prmz 14626 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  ZZ )
224223ad2antrl 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ZZ )
225212adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN )
226 dvdsle 14350 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  <_  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )
227224, 225, 226syl2anc 667 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  ||  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M ) ) )
228222, 227mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
229 zsqcl 12345 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
2308, 229syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  ZZ )
231230zred 11040 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
232231rehalfcld 10859 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
23316zred 11040 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C ^ 2 )  e.  RR )
23422zred 11040 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D ^ 2 )  e.  RR )
235233, 234readdcld 9670 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  RR )
236 1red 9658 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
23750nnsqcld 12436 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN )
238237nnred 10624 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  RR )
239161nn0ge0d 10928 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
240237nnge1d 10652 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  <_  ( ( C  gcd  D ) ^
2 ) )
241236, 238, 171, 239, 240lemul1ad 10546 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  <_  ( (
( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
242161nn0cnd 10927 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
243242mulid2d 9661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
244241, 243, 953brtr3d 4432 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
245232rehalfcld 10859 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
24611, 5, 124sqlem7 14888 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
24717, 5, 184sqlem7 14888 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
248233, 234, 245, 245, 246, 247le2addd 10232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
249232recnd 9669 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
2502492halvesd 10858 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
251248, 250breqtrd 4427 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
252171, 235, 232, 244, 251letrd 9792 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
2535nnsqcld 12436 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  NN )
254253nnrpd 11339 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR+ )
255 rphalflt 11329 . . . . . . . . . . . . . 14  |-  ( ( M ^ 2 )  e.  RR+  ->  ( ( M ^ 2 )  /  2 )  < 
( M ^ 2 ) )
256254, 255syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  <  ( M ^ 2 ) )
257171, 232, 231, 252, 256lelttrd 9793 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M ^ 2 ) )
2588zcnd 11041 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  CC )
259258sqvald 12413 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
260257, 259breqtrd 4427 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) )
261 ltdivmul 10480 . . . . . . . . . . . 12  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR  /\  M  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  -> 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
262171, 172, 172, 209, 261syl112anc 1272 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
263260, 262mpbird 236 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <  M )
264 zltlem1 10989 . . . . . . . . . . 11  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
265168, 8, 264syl2anc 667 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
266263, 265mpbid 214 . . . . . . . . 9  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <_  ( M  -  1 ) )
267266adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) )
268215, 217, 221, 228, 267letrd 9792 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( M  -  1 ) )
269219adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  ZZ )
270 fznn 11863 . . . . . . . 8  |-  ( ( M  -  1 )  e.  ZZ  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
271269, 270syl 17 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
272214, 268, 271mpbir2and 933 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ( 1 ... ( M  -  1 ) ) )
273206adantr 467 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y )
274272, 273jca 535 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y ) )
27548adantr 467 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
276 dvdsmul2 14325 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )  ->  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  ( M  x.  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) ) )
2778, 168, 276syl2anc 667 . . . . . . . 8  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( M  x.  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
278242, 258, 111divcan2d 10385 . . . . . . . 8  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
279277, 278breqtrd 4427 . . . . . . 7  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
280279adantr 467 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
281162adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )
282 dvdstr 14337 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )  ->  ( ( p 
||  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  /\  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  ->  p  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
283224, 216, 281, 282syl3anc 1268 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  /\  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  ->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
284222, 280, 283mp2and 685 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) )
285 breq1 4405 . . . . . . 7  |-  ( b  =  p  ->  (
b  ||  a  <->  p  ||  a
) )
286 eleq1 2517 . . . . . . 7  |-  ( b  =  p  ->  (
b  e.  S  <->  p  e.  S ) )
287285, 286imbi12d 322 . . . . . 6  |-  ( b  =  p  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( p  ||  a  ->  p  e.  S ) ) )
288 breq2 4406 . . . . . . 7  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
p  ||  a  <->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
289288imbi1d 319 . . . . . 6  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( p  ||  a  ->  p  e.  S )  <-> 
( p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  ->  p  e.  S
) ) )
290287, 289rspc2v 3159 . . . . 5  |-  ( ( p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )  ->  ( A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  ->  ( p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) )  ->  p  e.  S ) ) )
291274, 275, 284, 290syl3c 63 . . . 4  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  S )
292291expr 620 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  e.  S ) )
293292ralrimiva 2802 . 2  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  e.  S )
)
294 inss1 3652 . . . . 5  |-  ( S  i^i  NN )  C_  S
295173, 294sstri 3441 . . . 4  |-  Y  C_  S
296295, 206sseldi 3430 . . 3  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  S )
297278, 296eqeltrd 2529 . 2  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  e.  S )
2981, 5, 212, 293, 2972sqlem6 24297 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   {cab 2437    =/= wne 2622   A.wral 2737   E.wrex 2738    i^i cin 3403   class class class wbr 4402    |-> cmpt 4461   ran crn 4835   ` cfv 5582  (class class class)co 6290   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11784    mod cmo 12096   ^cexp 12272   abscabs 13297    || cdvds 14305    gcd cgcd 14468   Primecprime 14622   ZZ[_i]cgz 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-dvds 14306  df-gcd 14469  df-prm 14623  df-gz 14874
This theorem is referenced by:  2sqlem9  24301
  Copyright terms: Public domain W3C validator