MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Visualization version   Unicode version

Theorem 2sqlem8 24379
Description: Lemma for 2sq 24383. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.e  |-  E  =  ( C  /  ( C  gcd  D ) )
2sqlem8.f  |-  F  =  ( D  /  ( C  gcd  D ) )
Assertion
Ref Expression
2sqlem8  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    E, a, x, y, z    x, N, y, z    Y, a, b, x, y    F, a, x, y, z
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    E( w, b)    F( w, b)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem8.m . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 11255 . . . 4  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 201 . . 3  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 466 . 2  |-  ( ph  ->  M  e.  NN )
6 2sqlem9.7 . . . . . . 7  |-  ( ph  ->  M  ||  N )
7 eluzelz 11192 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
82, 7syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
9 2sqlem8.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
109nnzd 11062 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
11 2sqlem8.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
12 2sqlem8.c . . . . . . . . . . . 12  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1311, 5, 124sqlem5 14965 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
1413simpld 466 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
15 zsqcl 12383 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
1614, 15syl 17 . . . . . . . . 9  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
17 2sqlem8.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
18 2sqlem8.d . . . . . . . . . . . 12  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1917, 5, 184sqlem5 14965 . . . . . . . . . . 11  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
2019simpld 466 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ZZ )
21 zsqcl 12383 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
2220, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
2316, 22zaddcld 11067 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
2411, 5, 124sqlem8 14968 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( C ^
2 ) ) )
2517, 5, 184sqlem8 14968 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( B ^ 2 )  -  ( D ^
2 ) ) )
26 zsqcl 12383 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
2711, 26syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
2827, 16zsubcld 11068 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ )
29 zsqcl 12383 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
3017, 29syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
3130, 22zsubcld 11068 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  -  ( D ^ 2 ) )  e.  ZZ )
32 dvds2add 14411 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( ( A ^
2 )  -  ( C ^ 2 ) )  e.  ZZ  /\  (
( B ^ 2 )  -  ( D ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( A ^
2 )  -  ( C ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( D ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) ) )
338, 28, 31, 32syl3anc 1292 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  ||  ( ( A ^
2 )  -  ( C ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( D ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) ) )
3424, 25, 33mp2and 693 . . . . . . . . 9  |-  ( ph  ->  M  ||  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
35 2sqlem8.4 . . . . . . . . . . 11  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
3635oveq1d 6323 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
3727zcnd 11064 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
3830zcnd 11064 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
3916zcnd 11064 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
4022zcnd 11064 . . . . . . . . . . 11  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
4137, 38, 39, 40addsub4d 10052 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4236, 41eqtrd 2505 . . . . . . . . 9  |-  ( ph  ->  ( N  -  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( C ^ 2 ) )  +  ( ( B ^ 2 )  -  ( D ^ 2 ) ) ) )
4334, 42breqtrrd 4422 . . . . . . . 8  |-  ( ph  ->  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
44 dvdssub2 14419 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )  /\  M  ||  ( N  -  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )  ->  ( M  ||  N 
<->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
458, 10, 23, 43, 44syl31anc 1295 . . . . . . 7  |-  ( ph  ->  ( M  ||  N  <->  M 
||  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
466, 45mpbid 215 . . . . . 6  |-  ( ph  ->  M  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
47 2sqlem7.2 . . . . . . . . . . . 12  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
48 2sqlem9.5 . . . . . . . . . . . 12  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
49 2sqlem8.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
501, 47, 48, 6, 9, 2, 11, 17, 49, 35, 12, 182sqlem8a 24378 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
5150nnzd 11062 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  ZZ )
52 zsqcl2 12390 . . . . . . . . . 10  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  NN0 )
5351, 52syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN0 )
5453nn0cnd 10951 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  CC )
55 2sqlem8.e . . . . . . . . . . 11  |-  E  =  ( C  /  ( C  gcd  D ) )
56 gcddvds 14556 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5714, 20, 56syl2anc 673 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  /\  ( C  gcd  D ) 
||  D ) )
5857simpld 466 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  C )
5950nnne0d 10676 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  gcd  D
)  =/=  0 )
60 dvdsval2 14385 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  C  e.  ZZ )  ->  (
( C  gcd  D
)  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6151, 59, 14, 60syl3anc 1292 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  C  <->  ( C  /  ( C  gcd  D ) )  e.  ZZ ) )
6258, 61mpbid 215 . . . . . . . . . . 11  |-  ( ph  ->  ( C  /  ( C  gcd  D ) )  e.  ZZ )
6355, 62syl5eqel 2553 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
64 zsqcl2 12390 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
6563, 64syl 17 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
6665nn0cnd 10951 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
67 2sqlem8.f . . . . . . . . . . 11  |-  F  =  ( D  /  ( C  gcd  D ) )
6857simprd 470 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  D
)  ||  D )
69 dvdsval2 14385 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  ( C  gcd  D )  =/=  0  /\  D  e.  ZZ )  ->  (
( C  gcd  D
)  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
7051, 59, 20, 69syl3anc 1292 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  ||  D  <->  ( D  /  ( C  gcd  D ) )  e.  ZZ ) )
7168, 70mpbid 215 . . . . . . . . . . 11  |-  ( ph  ->  ( D  /  ( C  gcd  D ) )  e.  ZZ )
7267, 71syl5eqel 2553 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
73 zsqcl2 12390 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
7472, 73syl 17 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
7574nn0cnd 10951 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
7654, 66, 75adddid 9685 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^
2 ) )  +  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) ) ) )
7751zcnd 11064 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  D
)  e.  CC )
7863zcnd 11064 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
7977, 78sqmuld 12466 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( E ^
2 ) ) )
8055oveq2i 6319 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  E )  =  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )
8114zcnd 11064 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
8281, 77, 59divcan2d 10407 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( C  /  ( C  gcd  D ) ) )  =  C )
8380, 82syl5eq 2517 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  E )  =  C )
8483oveq1d 6323 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E ) ^ 2 )  =  ( C ^ 2 ) )
8579, 84eqtr3d 2507 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( E ^ 2 ) )  =  ( C ^
2 ) )
8672zcnd 11064 . . . . . . . . . 10  |-  ( ph  ->  F  e.  CC )
8777, 86sqmuld 12466 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( ( ( C  gcd  D
) ^ 2 )  x.  ( F ^
2 ) ) )
8867oveq2i 6319 . . . . . . . . . . 11  |-  ( ( C  gcd  D )  x.  F )  =  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )
8920zcnd 11064 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  CC )
9089, 77, 59divcan2d 10407 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( D  /  ( C  gcd  D ) ) )  =  D )
9188, 90syl5eq 2517 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  F )  =  D )
9291oveq1d 6323 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  F ) ^ 2 )  =  ( D ^ 2 ) )
9387, 92eqtr3d 2507 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  ( F ^ 2 ) )  =  ( D ^
2 ) )
9485, 93oveq12d 6326 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  gcd  D ) ^ 2 )  x.  ( E ^ 2 ) )  +  ( ( ( C  gcd  D ) ^ 2 )  x.  ( F ^
2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
9576, 94eqtrd 2505 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
9646, 95breqtrrd 4422 . . . . 5  |-  ( ph  ->  M  ||  ( ( ( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
97 zsqcl 12383 . . . . . . . 8  |-  ( ( C  gcd  D )  e.  ZZ  ->  (
( C  gcd  D
) ^ 2 )  e.  ZZ )
9851, 97syl 17 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )
99 gcdcom 14563 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ )  -> 
( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
1008, 98, 99syl2anc 673 . . . . . 6  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  ( ( ( C  gcd  D
) ^ 2 )  gcd  M ) )
101 gcddvds 14556 . . . . . . . . . . . . . 14  |-  ( ( ( C  gcd  D
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
10251, 8, 101syl2anc 673 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( ( C  gcd  D )  gcd  M ) 
||  M ) )
103102simpld 466 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( C  gcd  D ) )
10451, 8gcdcld 14561 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN0 )
105104nn0zd 11061 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  ZZ )
106 dvdstr 14414 . . . . . . . . . . . . 13  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  ( C  gcd  D )  e.  ZZ  /\  C  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( C  gcd  D ) 
||  C )  -> 
( ( C  gcd  D )  gcd  M ) 
||  C ) )
107105, 51, 14, 106syl3anc 1292 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  ( C  gcd  D )  /\  ( C  gcd  D )  ||  C )  ->  ( ( C  gcd  D )  gcd 
M )  ||  C
) )
108103, 58, 107mp2and 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  C )
109102simprd 470 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  M )
11013simprd 470 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  -  C )  /  M
)  e.  ZZ )
1115nnne0d 10676 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  =/=  0 )
11211, 14zsubcld 11068 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  C
)  e.  ZZ )
113 dvdsval2 14385 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( A  -  C )  e.  ZZ )  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C )  /  M )  e.  ZZ ) )
1148, 111, 112, 113syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( A  -  C )  <->  ( ( A  -  C
)  /  M )  e.  ZZ ) )
115110, 114mpbird 240 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( A  -  C ) )
116 dvdstr 14414 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  M  e.  ZZ  /\  ( A  -  C )  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  M  /\  M  ||  ( A  -  C ) )  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( A  -  C )
) )
117105, 8, 112, 116syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  M  /\  M  ||  ( A  -  C )
)  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( A  -  C )
) )
118109, 115, 117mp2and 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )
119 dvdssub2 14419 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  C  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( A  -  C ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
120105, 11, 14, 118, 119syl31anc 1295 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  A  <->  ( ( C  gcd  D
)  gcd  M )  ||  C ) )
121108, 120mpbird 240 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  A )
122 dvdstr 14414 . . . . . . . . . . . . 13  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  ( C  gcd  D )  e.  ZZ  /\  D  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  ( C  gcd  D )  /\  ( C  gcd  D ) 
||  D )  -> 
( ( C  gcd  D )  gcd  M ) 
||  D ) )
123105, 51, 20, 122syl3anc 1292 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  ( C  gcd  D )  /\  ( C  gcd  D )  ||  D )  ->  ( ( C  gcd  D )  gcd 
M )  ||  D
) )
124103, 68, 123mp2and 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  D )
12519simprd 470 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  -  D )  /  M
)  e.  ZZ )
12617, 20zsubcld 11068 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  D
)  e.  ZZ )
127 dvdsval2 14385 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  ( B  -  D )  e.  ZZ )  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D )  /  M )  e.  ZZ ) )
1288, 111, 126, 127syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  ||  ( B  -  D )  <->  ( ( B  -  D
)  /  M )  e.  ZZ ) )
129125, 128mpbird 240 . . . . . . . . . . . . 13  |-  ( ph  ->  M  ||  ( B  -  D ) )
130 dvdstr 14414 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  gcd  D )  gcd  M )  e.  ZZ  /\  M  e.  ZZ  /\  ( B  -  D )  e.  ZZ )  ->  (
( ( ( C  gcd  D )  gcd 
M )  ||  M  /\  M  ||  ( B  -  D ) )  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( B  -  D )
) )
131105, 8, 126, 130syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  M  /\  M  ||  ( B  -  D )
)  ->  ( ( C  gcd  D )  gcd 
M )  ||  ( B  -  D )
) )
132109, 129, 131mp2and 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )
133 dvdssub2 14419 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  /\  ( ( C  gcd  D )  gcd  M ) 
||  ( B  -  D ) )  -> 
( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
134105, 17, 20, 132, 133syl31anc 1295 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  ||  B  <->  ( ( C  gcd  D
)  gcd  M )  ||  D ) )
135124, 134mpbird 240 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M ) 
||  B )
136 ax-1ne0 9626 . . . . . . . . . . . . . . 15  |-  1  =/=  0
137136a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  =/=  0 )
13849, 137eqnetrd 2710 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
139138neneqd 2648 . . . . . . . . . . . 12  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
140 gcdeq0 14564 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
14111, 17, 140syl2anc 673 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
142139, 141mtbid 307 . . . . . . . . . . 11  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
143 dvdslegcd 14557 . . . . . . . . . . 11  |-  ( ( ( ( ( C  gcd  D )  gcd 
M )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
144105, 11, 17, 142, 143syl31anc 1295 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( C  gcd  D )  gcd  M )  ||  A  /\  ( ( C  gcd  D )  gcd 
M )  ||  B
)  ->  ( ( C  gcd  D )  gcd 
M )  <_  ( A  gcd  B ) ) )
145121, 135, 144mp2and 693 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  ( A  gcd  B ) )
146145, 49breqtrd 4420 . . . . . . . 8  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  <_  1 )
147 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( C  gcd  D
)  =  0  /\  M  =  0 )  ->  M  =  0 )
148147necon3ai 2668 . . . . . . . . . . 11  |-  ( M  =/=  0  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
149111, 148syl 17 . . . . . . . . . 10  |-  ( ph  ->  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )
150 gcdn0cl 14555 . . . . . . . . . 10  |-  ( ( ( ( C  gcd  D )  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( ( C  gcd  D )  =  0  /\  M  =  0 ) )  -> 
( ( C  gcd  D )  gcd  M )  e.  NN )
15151, 8, 149, 150syl21anc 1291 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  e.  NN )
152 nnle1eq1 10659 . . . . . . . . 9  |-  ( ( ( C  gcd  D
)  gcd  M )  e.  NN  ->  ( (
( C  gcd  D
)  gcd  M )  <_  1  <->  ( ( C  gcd  D )  gcd 
M )  =  1 ) )
153151, 152syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  <_  1  <->  ( ( C  gcd  D
)  gcd  M )  =  1 ) )
154146, 153mpbid 215 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  D )  gcd  M )  =  1 )
155 2nn 10790 . . . . . . . . 9  |-  2  e.  NN
156155a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
157 rplpwr 14603 . . . . . . . 8  |-  ( ( ( C  gcd  D
)  e.  NN  /\  M  e.  NN  /\  2  e.  NN )  ->  (
( ( C  gcd  D )  gcd  M )  =  1  ->  (
( ( C  gcd  D ) ^ 2 )  gcd  M )  =  1 ) )
15850, 5, 156, 157syl3anc 1292 . . . . . . 7  |-  ( ph  ->  ( ( ( C  gcd  D )  gcd 
M )  =  1  ->  ( ( ( C  gcd  D ) ^ 2 )  gcd 
M )  =  1 ) )
159154, 158mpd 15 . . . . . 6  |-  ( ph  ->  ( ( ( C  gcd  D ) ^
2 )  gcd  M
)  =  1 )
160100, 159eqtrd 2505 . . . . 5  |-  ( ph  ->  ( M  gcd  (
( C  gcd  D
) ^ 2 ) )  =  1 )
16165, 74nn0addcld 10953 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
162161nn0zd 11061 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )
163 coprmdvds 14738 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( ( C  gcd  D ) ^ 2 )  e.  ZZ  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
1648, 98, 162, 163syl3anc 1292 . . . . 5  |-  ( ph  ->  ( ( M  ||  ( ( ( C  gcd  D ) ^
2 )  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( M  gcd  ( ( C  gcd  D ) ^
2 ) )  =  1 )  ->  M  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) )
16596, 160, 164mp2and 693 . . . 4  |-  ( ph  ->  M  ||  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
166 dvdsval2 14385 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )  -> 
( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
1678, 111, 162, 166syl3anc 1292 . . . 4  |-  ( ph  ->  ( M  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ ) )
168165, 167mpbid 215 . . 3  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )
16965nn0red 10950 . . . . 5  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
17074nn0red 10950 . . . . 5  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
171169, 170readdcld 9688 . . . 4  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
1725nnred 10646 . . . 4  |-  ( ph  ->  M  e.  RR )
1731, 472sqlem7 24377 . . . . . . 7  |-  Y  C_  ( S  i^i  NN )
174 inss2 3644 . . . . . . 7  |-  ( S  i^i  NN )  C_  NN
175173, 174sstri 3427 . . . . . 6  |-  Y  C_  NN
17663, 72gcdcld 14561 . . . . . . . . . 10  |-  ( ph  ->  ( E  gcd  F
)  e.  NN0 )
177176nn0cnd 10951 . . . . . . . . 9  |-  ( ph  ->  ( E  gcd  F
)  e.  CC )
178 1cnd 9677 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
17977mulid1d 9678 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  D )  x.  1 )  =  ( C  gcd  D ) )
18083, 91oveq12d 6326 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( C  gcd  D ) )
18114, 20gcdcld 14561 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  D
)  e.  NN0 )
182 mulgcd 14593 . . . . . . . . . . 11  |-  ( ( ( C  gcd  D
)  e.  NN0  /\  E  e.  ZZ  /\  F  e.  ZZ )  ->  (
( ( C  gcd  D )  x.  E )  gcd  ( ( C  gcd  D )  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
183181, 63, 72, 182syl3anc 1292 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  D )  x.  E )  gcd  (
( C  gcd  D
)  x.  F ) )  =  ( ( C  gcd  D )  x.  ( E  gcd  F ) ) )
184179, 180, 1833eqtr2rd 2512 . . . . . . . . 9  |-  ( ph  ->  ( ( C  gcd  D )  x.  ( E  gcd  F ) )  =  ( ( C  gcd  D )  x.  1 ) )
185177, 178, 77, 59, 184mulcanad 10269 . . . . . . . 8  |-  ( ph  ->  ( E  gcd  F
)  =  1 )
186 eqidd 2472 . . . . . . . 8  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
187 oveq1 6315 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
x  gcd  y )  =  ( E  gcd  y ) )
188187eqeq1d 2473 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( x  gcd  y
)  =  1  <->  ( E  gcd  y )  =  1 ) )
189 oveq1 6315 . . . . . . . . . . . 12  |-  ( x  =  E  ->  (
x ^ 2 )  =  ( E ^
2 ) )
190189oveq1d 6323 . . . . . . . . . . 11  |-  ( x  =  E  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )
191190eqeq2d 2481 . . . . . . . . . 10  |-  ( x  =  E  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) ) )
192188, 191anbi12d 725 . . . . . . . . 9  |-  ( x  =  E  ->  (
( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( y ^ 2 ) ) ) ) )
193 oveq2 6316 . . . . . . . . . . 11  |-  ( y  =  F  ->  ( E  gcd  y )  =  ( E  gcd  F
) )
194193eqeq1d 2473 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( E  gcd  y
)  =  1  <->  ( E  gcd  F )  =  1 ) )
195 oveq1 6315 . . . . . . . . . . . 12  |-  ( y  =  F  ->  (
y ^ 2 )  =  ( F ^
2 ) )
196195oveq2d 6324 . . . . . . . . . . 11  |-  ( y  =  F  ->  (
( E ^ 2 )  +  ( y ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
197196eqeq2d 2481 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
198194, 197anbi12d 725 . . . . . . . . 9  |-  ( y  =  F  ->  (
( ( E  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( E  gcd  F )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( E ^
2 )  +  ( F ^ 2 ) ) ) ) )
199192, 198rspc2ev 3149 . . . . . . . 8  |-  ( ( E  e.  ZZ  /\  F  e.  ZZ  /\  (
( E  gcd  F
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
20063, 72, 185, 186, 199syl112anc 1296 . . . . . . 7  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
201 ovex 6336 . . . . . . . 8  |-  ( ( E ^ 2 )  +  ( F ^
2 ) )  e. 
_V
202 eqeq1 2475 . . . . . . . . . 10  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
203202anbi2d 718 . . . . . . . . 9  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
2042032rexbidv 2897 . . . . . . . 8  |-  ( z  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
205201, 204, 47elab2 3176 . . . . . . 7  |-  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  ( ( E ^ 2 )  +  ( F ^
2 ) )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
206200, 205sylibr 217 . . . . . 6  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )
207175, 206sseldi 3416 . . . . 5  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN )
208207nngt0d 10675 . . . 4  |-  ( ph  ->  0  <  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
2095nngt0d 10675 . . . 4  |-  ( ph  ->  0  <  M )
210171, 172, 208, 209divgt0d 10564 . . 3  |-  ( ph  ->  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) )
211 elnnz 10971 . . 3  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN  <->  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ  /\  0  <  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
212168, 210, 211sylanbrc 677 . 2  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )
213 prmnn 14704 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  NN )
214213ad2antrl 742 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  NN )
215214nnred 10646 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  RR )
216168adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  ZZ )
217216zred 11063 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  RR )
218 peano2zm 11004 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2198, 218syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
220219zred 11063 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  e.  RR )
221220adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  RR )
222 simprr 774 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
223 prmz 14705 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  ZZ )
224223ad2antrl 742 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ZZ )
225212adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  e.  NN )
226 dvdsle 14427 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  NN )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  <_  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )
227224, 225, 226syl2anc 673 . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  ||  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M ) ) )
228222, 227mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) )
229 zsqcl 12383 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
2308, 229syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  ZZ )
231230zred 11063 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
232231rehalfcld 10882 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
23316zred 11063 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C ^ 2 )  e.  RR )
23422zred 11063 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D ^ 2 )  e.  RR )
235233, 234readdcld 9688 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  RR )
236 1red 9676 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
23750nnsqcld 12474 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  NN )
238237nnred 10646 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( C  gcd  D ) ^ 2 )  e.  RR )
239161nn0ge0d 10952 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
240237nnge1d 10674 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  <_  ( ( C  gcd  D ) ^
2 ) )
241236, 238, 171, 239, 240lemul1ad 10568 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  <_  ( (
( C  gcd  D
) ^ 2 )  x.  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
242161nn0cnd 10951 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
243242mulid2d 9679 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
244241, 243, 953brtr3d 4425 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
245232rehalfcld 10882 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
24611, 5, 124sqlem7 14967 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
24717, 5, 184sqlem7 14967 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
248233, 234, 245, 245, 246, 247le2addd 10253 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
249232recnd 9687 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
2502492halvesd 10881 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
251248, 250breqtrd 4420 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
252171, 235, 232, 244, 251letrd 9809 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
2535nnsqcld 12474 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ 2 )  e.  NN )
254253nnrpd 11362 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M ^ 2 )  e.  RR+ )
255 rphalflt 11352 . . . . . . . . . . . . . 14  |-  ( ( M ^ 2 )  e.  RR+  ->  ( ( M ^ 2 )  /  2 )  < 
( M ^ 2 ) )
256254, 255syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  <  ( M ^ 2 ) )
257171, 232, 231, 252, 256lelttrd 9810 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M ^ 2 ) )
2588zcnd 11064 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  CC )
259258sqvald 12451 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
260257, 259breqtrd 4420 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) )
261 ltdivmul 10502 . . . . . . . . . . . 12  |-  ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR  /\  M  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  -> 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
262171, 172, 172, 209, 261syl112anc 1296 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( E ^ 2 )  +  ( F ^ 2 ) )  <  ( M  x.  M ) ) )
263260, 262mpbird 240 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <  M )
264 zltlem1 11013 . . . . . . . . . . 11  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
265168, 8, 264syl2anc 673 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  <  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) ) )
266263, 265mpbid 215 . . . . . . . . 9  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  <_  ( M  -  1 ) )
267266adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  <_  ( M  - 
1 ) )
268215, 217, 221, 228, 267letrd 9809 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  <_  ( M  -  1 ) )
269219adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  ( M  -  1 )  e.  ZZ )
270 fznn 11889 . . . . . . . 8  |-  ( ( M  -  1 )  e.  ZZ  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
271269, 270syl 17 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  <->  ( p  e.  NN  /\  p  <_ 
( M  -  1 ) ) ) )
272214, 268, 271mpbir2and 936 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  ( 1 ... ( M  -  1 ) ) )
273206adantr 472 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  Y )
274272, 273jca 541 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y ) )
27548adantr 472 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
276 dvdsmul2 14402 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ )  ->  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  ( M  x.  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  /  M ) ) )
2778, 168, 276syl2anc 673 . . . . . . . 8  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( M  x.  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
) ) )
278242, 258, 111divcan2d 10407 . . . . . . . 8  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  =  ( ( E ^ 2 )  +  ( F ^
2 ) ) )
279277, 278breqtrd 4420 . . . . . . 7  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
280279adantr 472 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
281162adantr 472 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  e.  ZZ )
282 dvdstr 14414 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  e.  ZZ  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )  ->  ( ( p 
||  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  /\  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) 
||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  ->  p  ||  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
283224, 216, 281, 282syl3anc 1292 . . . . . 6  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  (
( p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M )  /\  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  /  M )  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  ->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
284222, 280, 283mp2and 693 . . . . 5  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) ) )
285 breq1 4398 . . . . . . 7  |-  ( b  =  p  ->  (
b  ||  a  <->  p  ||  a
) )
286 eleq1 2537 . . . . . . 7  |-  ( b  =  p  ->  (
b  e.  S  <->  p  e.  S ) )
287285, 286imbi12d 327 . . . . . 6  |-  ( b  =  p  ->  (
( b  ||  a  ->  b  e.  S )  <-> 
( p  ||  a  ->  p  e.  S ) ) )
288 breq2 4399 . . . . . . 7  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
p  ||  a  <->  p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) ) ) )
289288imbi1d 324 . . . . . 6  |-  ( a  =  ( ( E ^ 2 )  +  ( F ^ 2 ) )  ->  (
( p  ||  a  ->  p  e.  S )  <-> 
( p  ||  (
( E ^ 2 )  +  ( F ^ 2 ) )  ->  p  e.  S
) ) )
290287, 289rspc2v 3147 . . . . 5  |-  ( ( p  e.  ( 1 ... ( M  - 
1 ) )  /\  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  Y )  ->  ( A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
)  ->  ( p  ||  ( ( E ^
2 )  +  ( F ^ 2 ) )  ->  p  e.  S ) ) )
291274, 275, 284, 290syl3c 62 . . . 4  |-  ( (
ph  /\  ( p  e.  Prime  /\  p  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) ) )  ->  p  e.  S )
292291expr 626 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M
)  ->  p  e.  S ) )
293292ralrimiva 2809 . 2  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  /  M )  ->  p  e.  S )
)
294 inss1 3643 . . . . 5  |-  ( S  i^i  NN )  C_  S
295173, 294sstri 3427 . . . 4  |-  Y  C_  S
296295, 206sseldi 3416 . . 3  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  S )
297278, 296eqeltrd 2549 . 2  |-  ( ph  ->  ( M  x.  (
( ( E ^
2 )  +  ( F ^ 2 ) )  /  M ) )  e.  S )
2981, 5, 212, 293, 2972sqlem6 24376 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   E.wrex 2757    i^i cin 3389   class class class wbr 4395    |-> cmpt 4454   ran crn 4840   ` cfv 5589  (class class class)co 6308   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810    mod cmo 12129   ^cexp 12310   abscabs 13374    || cdvds 14382    gcd cgcd 14547   Primecprime 14701   ZZ[_i]cgz 14952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-gz 14953
This theorem is referenced by:  2sqlem9  24380
  Copyright terms: Public domain W3C validator