MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8a Structured version   Visualization version   GIF version

Theorem 2sqlem8a 24950
Description: Lemma for 2sqlem8 24951. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
2sqlem8a (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 2sqlem8.m . . . . . 6 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 11638 . . . . . 6 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 207 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 474 . . . 4 (𝜑𝑀 ∈ ℕ)
6 2sqlem8.c . . . 4 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
71, 5, 64sqlem5 15484 . . 3 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
87simpld 474 . 2 (𝜑𝐶 ∈ ℤ)
9 2sqlem8.2 . . . 4 (𝜑𝐵 ∈ ℤ)
10 2sqlem8.d . . . 4 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 5, 104sqlem5 15484 . . 3 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1211simpld 474 . 2 (𝜑𝐷 ∈ ℤ)
134simprd 478 . . . 4 (𝜑𝑀 ≠ 1)
14 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0)
151, 5, 6, 144sqlem9 15488 . . . . . . . . 9 ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2))
1615ex 449 . . . . . . . 8 (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2)))
17 eluzelz 11573 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
182, 17syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
19 dvdssq 15118 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2018, 1, 19syl2anc 691 . . . . . . . 8 (𝜑 → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2116, 20sylibrd 248 . . . . . . 7 (𝜑 → ((𝐶↑2) = 0 → 𝑀𝐴))
22 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0)
239, 5, 10, 224sqlem9 15488 . . . . . . . . 9 ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2))
2423ex 449 . . . . . . . 8 (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2)))
25 dvdssq 15118 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2618, 9, 25syl2anc 691 . . . . . . . 8 (𝜑 → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2724, 26sylibrd 248 . . . . . . 7 (𝜑 → ((𝐷↑2) = 0 → 𝑀𝐵))
28 2sqlem8.3 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) = 1)
29 ax-1ne0 9884 . . . . . . . . . . . 12 1 ≠ 0
3029a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
3128, 30eqnetrd 2849 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
3231neneqd 2787 . . . . . . . . 9 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
33 gcdeq0 15076 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
341, 9, 33syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3532, 34mtbid 313 . . . . . . . 8 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
36 dvdslegcd 15064 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3718, 1, 9, 35, 36syl31anc 1321 . . . . . . 7 (𝜑 → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3821, 27, 37syl2and 499 . . . . . 6 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3928breq2d 4595 . . . . . . 7 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1))
40 nnle1eq1 10925 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1))
415, 40syl 17 . . . . . . 7 (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1))
4239, 41bitrd 267 . . . . . 6 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1))
4338, 42sylibd 228 . . . . 5 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1))
4443necon3ad 2795 . . . 4 (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)))
4513, 44mpd 15 . . 3 (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))
468zcnd 11359 . . . . 5 (𝜑𝐶 ∈ ℂ)
47 sqeq0 12789 . . . . 5 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4846, 47syl 17 . . . 4 (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4912zcnd 11359 . . . . 5 (𝜑𝐷 ∈ ℂ)
50 sqeq0 12789 . . . . 5 (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5149, 50syl 17 . . . 4 (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5248, 51anbi12d 743 . . 3 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0)))
5345, 52mtbid 313 . 2 (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0))
54 gcdn0cl 15062 . 2 (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ)
558, 12, 53, 54syl21anc 1317 1 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cuz 11563  ...cfz 12197   mod cmo 12530  cexp 12722  abscabs 13822  cdvds 14821   gcd cgcd 15054  ℤ[i]cgz 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  2sqlem8  24951
  Copyright terms: Public domain W3C validator