Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum2dchr Structured version   Visualization version   GIF version

Theorem sum2dchr 24799
 Description: An orthogonality relation for Dirichlet characters: the sum of 𝑥(𝐴) for fixed 𝐴 and all 𝑥 is 0 if 𝐴 = 1 and ϕ(𝑛) otherwise. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sum2dchr.g 𝐺 = (DChr‘𝑁)
sum2dchr.d 𝐷 = (Base‘𝐺)
sum2dchr.z 𝑍 = (ℤ/nℤ‘𝑁)
sum2dchr.b 𝐵 = (Base‘𝑍)
sum2dchr.u 𝑈 = (Unit‘𝑍)
sum2dchr.n (𝜑𝑁 ∈ ℕ)
sum2dchr.a (𝜑𝐴𝐵)
sum2dchr.c (𝜑𝐶𝑈)
Assertion
Ref Expression
sum2dchr (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐺   𝑥,𝑁   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)

Proof of Theorem sum2dchr
StepHypRef Expression
1 sum2dchr.g . . 3 𝐺 = (DChr‘𝑁)
2 sum2dchr.d . . 3 𝐷 = (Base‘𝐺)
3 sum2dchr.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 eqid 2610 . . 3 (1r𝑍) = (1r𝑍)
5 sum2dchr.b . . 3 𝐵 = (Base‘𝑍)
6 sum2dchr.n . . 3 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11228 . . . . 5 (𝜑𝑁 ∈ ℕ0)
83zncrng 19712 . . . . 5 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
9 crngring 18381 . . . . 5 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
107, 8, 93syl 18 . . . 4 (𝜑𝑍 ∈ Ring)
11 sum2dchr.a . . . 4 (𝜑𝐴𝐵)
12 sum2dchr.c . . . 4 (𝜑𝐶𝑈)
13 sum2dchr.u . . . . 5 𝑈 = (Unit‘𝑍)
14 eqid 2610 . . . . 5 (/r𝑍) = (/r𝑍)
155, 13, 14dvrcl 18509 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1318 . . 3 (𝜑 → (𝐴(/r𝑍)𝐶) ∈ 𝐵)
171, 2, 3, 4, 5, 6, 16sumdchr 24797 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0))
18 eqid 2610 . . . . . . . 8 (.r𝑍) = (.r𝑍)
19 eqid 2610 . . . . . . . 8 (invr𝑍) = (invr𝑍)
205, 18, 13, 19, 14dvrval 18508 . . . . . . 7 ((𝐴𝐵𝐶𝑈) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2111, 12, 20syl2anc 691 . . . . . 6 (𝜑 → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2221adantr 480 . . . . 5 ((𝜑𝑥𝐷) → (𝐴(/r𝑍)𝐶) = (𝐴(.r𝑍)((invr𝑍)‘𝐶)))
2322fveq2d 6107 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))))
241, 3, 2dchrmhm 24766 . . . . . 6 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
25 simpr 476 . . . . . 6 ((𝜑𝑥𝐷) → 𝑥𝐷)
2624, 25sseldi 3566 . . . . 5 ((𝜑𝑥𝐷) → 𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
2711adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝐴𝐵)
285, 13unitss 18483 . . . . . 6 𝑈𝐵
2913, 19unitinvcl 18497 . . . . . . . 8 ((𝑍 ∈ Ring ∧ 𝐶𝑈) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3010, 12, 29syl2anc 691 . . . . . . 7 (𝜑 → ((invr𝑍)‘𝐶) ∈ 𝑈)
3130adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝑈)
3228, 31sseldi 3566 . . . . 5 ((𝜑𝑥𝐷) → ((invr𝑍)‘𝐶) ∈ 𝐵)
33 eqid 2610 . . . . . . 7 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3433, 5mgpbas 18318 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑍))
3533, 18mgpplusg 18316 . . . . . 6 (.r𝑍) = (+g‘(mulGrp‘𝑍))
36 eqid 2610 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
37 cnfldmul 19573 . . . . . . 7 · = (.r‘ℂfld)
3836, 37mgpplusg 18316 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3934, 35, 38mhmlin 17165 . . . . 5 ((𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐶) ∈ 𝐵) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
4026, 27, 32, 39syl3anc 1318 . . . 4 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(.r𝑍)((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))))
41 eqid 2610 . . . . . . . 8 ((mulGrp‘𝑍) ↾s 𝑈) = ((mulGrp‘𝑍) ↾s 𝑈)
42 eqid 2610 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
431, 3, 2, 13, 41, 42, 25dchrghm 24781 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
4412adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → 𝐶𝑈)
4513, 41unitgrpbas 18489 . . . . . . . 8 𝑈 = (Base‘((mulGrp‘𝑍) ↾s 𝑈))
4613, 41, 19invrfval 18496 . . . . . . . 8 (invr𝑍) = (invg‘((mulGrp‘𝑍) ↾s 𝑈))
47 cnfldbas 19571 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
48 cnfld0 19589 . . . . . . . . . 10 0 = (0g‘ℂfld)
49 cndrng 19594 . . . . . . . . . 10 fld ∈ DivRing
5047, 48, 49drngui 18576 . . . . . . . . 9 (ℂ ∖ {0}) = (Unit‘ℂfld)
51 eqid 2610 . . . . . . . . 9 (invr‘ℂfld) = (invr‘ℂfld)
5250, 42, 51invrfval 18496 . . . . . . . 8 (invr‘ℂfld) = (invg‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
5345, 46, 52ghminv 17490 . . . . . . 7 (((𝑥𝑈) ∈ (((mulGrp‘𝑍) ↾s 𝑈) GrpHom ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ∧ 𝐶𝑈) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
5443, 44, 53syl2anc 691 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)))
55 fvres 6117 . . . . . . 7 (((invr𝑍)‘𝐶) ∈ 𝑈 → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
5631, 55syl 17 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘((invr𝑍)‘𝐶)) = (𝑥‘((invr𝑍)‘𝐶)))
57 fvres 6117 . . . . . . . . 9 (𝐶𝑈 → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5844, 57syl 17 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝑥𝑈)‘𝐶) = (𝑥𝐶))
5958fveq2d 6107 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = ((invr‘ℂfld)‘(𝑥𝐶)))
601, 3, 2, 5, 25dchrf 24767 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝑥:𝐵⟶ℂ)
6128, 44sseldi 3566 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐶𝐵)
6260, 61ffvelrnd 6268 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ∈ ℂ)
631, 3, 2, 5, 13, 25, 61dchrn0 24775 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((𝑥𝐶) ≠ 0 ↔ 𝐶𝑈))
6444, 63mpbird 246 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝑥𝐶) ≠ 0)
65 cnfldinv 19596 . . . . . . . 8 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
6662, 64, 65syl2anc 691 . . . . . . 7 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘(𝑥𝐶)) = (1 / (𝑥𝐶)))
67 recval 13910 . . . . . . . . 9 (((𝑥𝐶) ∈ ℂ ∧ (𝑥𝐶) ≠ 0) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
6862, 64, 67syl2anc 691 . . . . . . . 8 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)))
691, 2, 25, 3, 13, 44dchrabs 24785 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → (abs‘(𝑥𝐶)) = 1)
7069oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = (1↑2))
71 sq1 12820 . . . . . . . . . 10 (1↑2) = 1
7270, 71syl6eq 2660 . . . . . . . . 9 ((𝜑𝑥𝐷) → ((abs‘(𝑥𝐶))↑2) = 1)
7372oveq2d 6565 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / ((abs‘(𝑥𝐶))↑2)) = ((∗‘(𝑥𝐶)) / 1))
7462cjcld 13784 . . . . . . . . 9 ((𝜑𝑥𝐷) → (∗‘(𝑥𝐶)) ∈ ℂ)
7574div1d 10672 . . . . . . . 8 ((𝜑𝑥𝐷) → ((∗‘(𝑥𝐶)) / 1) = (∗‘(𝑥𝐶)))
7668, 73, 753eqtrd 2648 . . . . . . 7 ((𝜑𝑥𝐷) → (1 / (𝑥𝐶)) = (∗‘(𝑥𝐶)))
7759, 66, 763eqtrd 2648 . . . . . 6 ((𝜑𝑥𝐷) → ((invr‘ℂfld)‘((𝑥𝑈)‘𝐶)) = (∗‘(𝑥𝐶)))
7854, 56, 773eqtr3d 2652 . . . . 5 ((𝜑𝑥𝐷) → (𝑥‘((invr𝑍)‘𝐶)) = (∗‘(𝑥𝐶)))
7978oveq2d 6565 . . . 4 ((𝜑𝑥𝐷) → ((𝑥𝐴) · (𝑥‘((invr𝑍)‘𝐶))) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
8023, 40, 793eqtrd 2648 . . 3 ((𝜑𝑥𝐷) → (𝑥‘(𝐴(/r𝑍)𝐶)) = ((𝑥𝐴) · (∗‘(𝑥𝐶))))
8180sumeq2dv 14281 . 2 (𝜑 → Σ𝑥𝐷 (𝑥‘(𝐴(/r𝑍)𝐶)) = Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))))
825, 13, 14, 4dvreq1 18516 . . . 4 ((𝑍 ∈ Ring ∧ 𝐴𝐵𝐶𝑈) → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8310, 11, 12, 82syl3anc 1318 . . 3 (𝜑 → ((𝐴(/r𝑍)𝐶) = (1r𝑍) ↔ 𝐴 = 𝐶))
8483ifbid 4058 . 2 (𝜑 → if((𝐴(/r𝑍)𝐶) = (1r𝑍), (ϕ‘𝑁), 0) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
8517, 81, 843eqtr3d 2652 1 (𝜑 → Σ𝑥𝐷 ((𝑥𝐴) · (∗‘(𝑥𝐶))) = if(𝐴 = 𝐶, (ϕ‘𝑁), 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537  ifcif 4036  {csn 4125   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ↑cexp 12722  ∗ccj 13684  abscabs 13822  Σcsu 14264  ϕcphi 15307  Basecbs 15695   ↾s cress 15696  .rcmulr 15769   MndHom cmhm 17156   GrpHom cghm 17480  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  CRingccrg 18371  Unitcui 18462  invrcinvr 18494  /rcdvr 18505  ℂfldccnfld 19567  ℤ/nℤczn 19670  DChrcdchr 24757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-gim 17524  df-ga 17546  df-cntz 17573  df-oppg 17599  df-od 17771  df-gex 17772  df-pgp 17773  df-lsm 17874  df-pj1 17875  df-cmn 18018  df-abl 18019  df-cyg 18103  df-dprd 18217  df-dpj 18218  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-quot 23850  df-log 24107  df-cxp 24108  df-dchr 24758 This theorem is referenced by:  rpvmasum2  25001
 Copyright terms: Public domain W3C validator