Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dchrn0 | Structured version Visualization version GIF version |
Description: A Dirichlet character is nonzero on the units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrn0.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
dchrn0 | ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | dchrn0.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
3 | dchrmhm.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
4 | dchrmhm.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
5 | dchrn0.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑍) | |
6 | dchrn0.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑍) | |
7 | dchrmhm.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
8 | 3, 7 | dchrrcl 24765 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
10 | 3, 4, 5, 6, 9, 7 | dchrelbas2 24762 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)))) |
11 | 2, 10 | mpbid 221 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
12 | 11 | simprd 478 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
13 | fveq2 6103 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑋‘𝑥) = (𝑋‘𝐴)) | |
14 | 13 | neeq1d 2841 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑋‘𝑥) ≠ 0 ↔ (𝑋‘𝐴) ≠ 0)) |
15 | eleq1 2676 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
16 | 14, 15 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈) ↔ ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈))) |
17 | 16 | rspcv 3278 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈) → ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈))) |
18 | 1, 12, 17 | sylc 63 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈)) |
19 | 18 | imp 444 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝐴 ∈ 𝑈) |
20 | ax-1ne0 9884 | . . . . 5 ⊢ 1 ≠ 0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 1 ≠ 0) |
22 | 9 | nnnn0d 11228 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
23 | 4 | zncrng 19712 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
24 | crngring 18381 | . . . . . . . 8 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
25 | 22, 23, 24 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ Ring) |
26 | eqid 2610 | . . . . . . . 8 ⊢ (invr‘𝑍) = (invr‘𝑍) | |
27 | eqid 2610 | . . . . . . . 8 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
28 | eqid 2610 | . . . . . . . 8 ⊢ (1r‘𝑍) = (1r‘𝑍) | |
29 | 6, 26, 27, 28 | unitrinv 18501 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
30 | 25, 29 | sylan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
31 | 30 | fveq2d 6107 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = (𝑋‘(1r‘𝑍))) |
32 | 11 | simpld 474 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
33 | 32 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
34 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝐵) |
35 | 6, 26, 5 | ringinvcl 18499 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
36 | 25, 35 | sylan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
37 | eqid 2610 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
38 | 37, 5 | mgpbas 18318 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑍)) |
39 | 37, 27 | mgpplusg 18316 | . . . . . . 7 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
40 | eqid 2610 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
41 | cnfldmul 19573 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
42 | 40, 41 | mgpplusg 18316 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
43 | 38, 39, 42 | mhmlin 17165 | . . . . . 6 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴 ∈ 𝐵 ∧ ((invr‘𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
44 | 33, 34, 36, 43 | syl3anc 1318 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
45 | 37, 28 | ringidval 18326 | . . . . . . 7 ⊢ (1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
46 | cnfld1 19590 | . . . . . . . 8 ⊢ 1 = (1r‘ℂfld) | |
47 | 40, 46 | ringidval 18326 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
48 | 45, 47 | mhm0 17166 | . . . . . 6 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
49 | 33, 48 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(1r‘𝑍)) = 1) |
50 | 31, 44, 49 | 3eqtr3d 2652 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = 1) |
51 | cnfldbas 19571 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
52 | 40, 51 | mgpbas 18318 | . . . . . . . 8 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
53 | 38, 52 | mhmf 17163 | . . . . . . 7 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ) |
54 | 33, 53 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋:𝐵⟶ℂ) |
55 | 54, 36 | ffvelrnd 6268 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘((invr‘𝑍)‘𝐴)) ∈ ℂ) |
56 | 55 | mul02d 10113 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (0 · (𝑋‘((invr‘𝑍)‘𝐴))) = 0) |
57 | 21, 50, 56 | 3netr4d 2859 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) |
58 | oveq1 6556 | . . . 4 ⊢ ((𝑋‘𝐴) = 0 → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) | |
59 | 58 | necon3i 2814 | . . 3 ⊢ (((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴))) → (𝑋‘𝐴) ≠ 0) |
60 | 57, 59 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘𝐴) ≠ 0) |
61 | 19, 60 | impbida 873 | 1 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 0cc0 9815 1c1 9816 · cmul 9820 ℕcn 10897 ℕ0cn0 11169 Basecbs 15695 .rcmulr 15769 MndHom cmhm 17156 mulGrpcmgp 18312 1rcur 18324 Ringcrg 18370 CRingccrg 18371 Unitcui 18462 invrcinvr 18494 ℂfldccnfld 19567 ℤ/nℤczn 19670 DChrcdchr 24757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-ec 7631 df-qs 7635 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-0g 15925 df-imas 15991 df-qus 15992 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-nsg 17415 df-eqg 17416 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-subrg 18601 df-lmod 18688 df-lss 18754 df-lsp 18793 df-sra 18993 df-rgmod 18994 df-lidl 18995 df-rsp 18996 df-2idl 19053 df-cnfld 19568 df-zring 19638 df-zn 19674 df-dchr 24758 |
This theorem is referenced by: dchrinvcl 24778 dchrfi 24780 dchrghm 24781 dchreq 24783 dchrabs 24785 dchrabs2 24787 dchr1re 24788 dchrpt 24792 dchrsum 24794 sum2dchr 24799 rpvmasumlem 24976 dchrisum0flblem1 24997 |
Copyright terms: Public domain | W3C validator |