Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   GIF version

Theorem drngui 18576
 Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b 𝐵 = (Base‘𝑅)
drngui.z 0 = (0g𝑅)
drngui.r 𝑅 ∈ DivRing
Assertion
Ref Expression
drngui (𝐵 ∖ { 0 }) = (Unit‘𝑅)

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4 𝑅 ∈ DivRing
2 drngui.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2610 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4 drngui.z . . . . 5 0 = (0g𝑅)
52, 3, 4isdrng 18574 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
61, 5mpbi 219 . . 3 (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))
76simpri 477 . 2 (Unit‘𝑅) = (𝐵 ∖ { 0 })
87eqcomi 2619 1 (𝐵 ∖ { 0 }) = (Unit‘𝑅)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537  {csn 4125  ‘cfv 5804  Basecbs 15695  0gc0g 15923  Ringcrg 18370  Unitcui 18462  DivRingcdr 18570 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-drng 18572 This theorem is referenced by:  cnflddiv  19595  cnfldinv  19596  cnsubdrglem  19616  cnmgpabl  19626  cnmsubglem  19628  gzrngunit  19631  zringunit  19655  expghm  19663  psgninv  19747  zrhpsgnmhm  19749  amgmlem  24516  dchrghm  24781  dchrabs  24785  sum2dchr  24799  lgseisenlem4  24903  qrngdiv  25113  proot1ex  36798  amgmwlem  42357  amgmlemALT  42358
 Copyright terms: Public domain W3C validator