Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   Unicode version

Theorem drngui 17974
 Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b
drngui.z
drngui.r
Assertion
Ref Expression
drngui Unit

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4
2 drngui.b . . . . 5
3 eqid 2450 . . . . 5 Unit Unit
4 drngui.z . . . . 5
52, 3, 4isdrng 17972 . . . 4 Unit
61, 5mpbi 212 . . 3 Unit
76simpri 464 . 2 Unit
87eqcomi 2459 1 Unit
 Colors of variables: wff setvar class Syntax hints:   wa 371   wceq 1443   wcel 1886   cdif 3400  csn 3967  cfv 5581  cbs 15114  c0g 15331  crg 17773  Unitcui 17860  cdr 17968 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-iota 5545  df-fv 5589  df-drng 17970 This theorem is referenced by:  cnflddiv  18991  cnfldinv  18992  cnsubdrglem  19012  cnmgpabl  19022  cnmsubglem  19023  gzrngunit  19026  zringunit  19055  expghm  19060  psgninv  19143  zrhpsgnmhm  19145  amgmlem  23908  dchrghm  24177  dchrabs  24181  sum2dchr  24195  lgseisenlem4  24273  qrngdiv  24455  proot1ex  36072
 Copyright terms: Public domain W3C validator