Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Visualization version   GIF version

Theorem proot1ex 36798
Description: The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
proot1ex.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1ex (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))

Proof of Theorem proot1ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neg1cn 11001 . . . 4 -1 ∈ ℂ
2 2rp 11713 . . . . . 6 2 ∈ ℝ+
3 nnrp 11718 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4 rpdivcl 11732 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 / 𝑁) ∈ ℝ+)
52, 3, 4sylancr 694 . . . . 5 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℝ+)
65rpcnd 11750 . . . 4 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℂ)
7 cxpcl 24220 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 694 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
10 neg1ne0 11003 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ≠ 0)
129, 11, 6cxpne0d 24259 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 eldifsn 4260 . . 3 ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0))
148, 12, 13sylanbrc 695 . 2 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
151a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ∈ ℂ)
1610a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ≠ 0)
17 nn0cn 11179 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
18 mulcl 9899 . . . . . . . . . 10 (((2 / 𝑁) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
196, 17, 18syl2an 493 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
2015, 16, 19cxpefd 24258 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))))
2120eqeq1d 2612 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1))
22 logcl 24119 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (log‘-1) ∈ ℂ)
231, 10, 22mp2an 704 . . . . . . . . 9 (log‘-1) ∈ ℂ
24 mulcl 9899 . . . . . . . . 9 ((((2 / 𝑁) · 𝑥) ∈ ℂ ∧ (log‘-1) ∈ ℂ) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
2519, 23, 24sylancl 693 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
26 efeq1 24079 . . . . . . . 8 ((((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
2725, 26syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
28 2cn 10968 . . . . . . . . . . . . . 14 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 2 ∈ ℂ)
30 nncn 10905 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3130adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℂ)
3217adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
33 nnne0 10930 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3433adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ≠ 0)
3529, 31, 32, 34div13d 10704 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) = ((𝑥 / 𝑁) · 2))
36 logm1 24139 . . . . . . . . . . . . 13 (log‘-1) = (i · π)
3736a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (log‘-1) = (i · π))
3835, 37oveq12d 6567 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = (((𝑥 / 𝑁) · 2) · (i · π)))
3932, 31, 34divcld 10680 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥 / 𝑁) ∈ ℂ)
40 ax-icn 9874 . . . . . . . . . . . . . 14 i ∈ ℂ
41 picn 24015 . . . . . . . . . . . . . 14 π ∈ ℂ
4240, 41mulcli 9924 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
4342a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · π) ∈ ℂ)
4439, 29, 43mulassd 9942 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · 2) · (i · π)) = ((𝑥 / 𝑁) · (2 · (i · π))))
4540a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → i ∈ ℂ)
4641a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → π ∈ ℂ)
4729, 45, 46mul12d 10124 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 · (i · π)) = (i · (2 · π)))
4847oveq2d 6565 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥 / 𝑁) · (2 · (i · π))) = ((𝑥 / 𝑁) · (i · (2 · π))))
4938, 44, 483eqtrd 2648 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = ((𝑥 / 𝑁) · (i · (2 · π))))
5049oveq1d 6564 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))))
5128, 41mulcli 9924 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
5240, 51mulcli 9924 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
5352a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ∈ ℂ)
54 ine0 10344 . . . . . . . . . . . 12 i ≠ 0
55 2ne0 10990 . . . . . . . . . . . . 13 2 ≠ 0
56 pire 24014 . . . . . . . . . . . . . 14 π ∈ ℝ
57 pipos 24016 . . . . . . . . . . . . . 14 0 < π
5856, 57gt0ne0ii 10443 . . . . . . . . . . . . 13 π ≠ 0
5928, 41, 55, 58mulne0i 10549 . . . . . . . . . . . 12 (2 · π) ≠ 0
6040, 51, 54, 59mulne0i 10549 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
6160a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ≠ 0)
6239, 53, 61divcan4d 10686 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))) = (𝑥 / 𝑁))
6350, 62eqtrd 2644 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (𝑥 / 𝑁))
6463eleq1d 2672 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ ↔ (𝑥 / 𝑁) ∈ ℤ))
6521, 27, 643bitrd 293 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (𝑥 / 𝑁) ∈ ℤ))
666adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 / 𝑁) ∈ ℂ)
67 simpr 476 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
6815, 66, 67cxpmul2d 24255 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
69 cnfldexp 19598 . . . . . . . . 9 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
708, 69sylan 487 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
71 cnring 19587 . . . . . . . . . 10 fld ∈ Ring
72 cnfldbas 19571 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
73 cnfld0 19589 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
74 cndrng 19594 . . . . . . . . . . . 12 fld ∈ DivRing
7572, 73, 74drngui 18576 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
76 eqid 2610 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
7775, 76unitsubm 18493 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7871, 77mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7914adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
80 eqid 2610 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
81 proot1ex.g . . . . . . . . . 10 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
82 eqid 2610 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
8380, 81, 82submmulg 17409 . . . . . . . . 9 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑥 ∈ ℕ0 ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0})) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8478, 67, 79, 83syl3anc 1318 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8568, 70, 843eqtr2rd 2651 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = (-1↑𝑐((2 / 𝑁) · 𝑥)))
8685eqeq1d 2612 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1 ↔ (-1↑𝑐((2 / 𝑁) · 𝑥)) = 1))
87 nnz 11276 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8887adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
89 nn0z 11277 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
9089adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
91 dvdsval2 14824 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9288, 34, 90, 91syl3anc 1318 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9365, 86, 923bitr4rd 300 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9493ralrimiva 2949 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9575, 81unitgrp 18490 . . . . . 6 (ℂfld ∈ Ring → 𝐺 ∈ Grp)
9671, 95mp1i 13 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
97 nnnn0 11176 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9875, 81unitgrpbas 18489 . . . . . 6 (ℂ ∖ {0}) = (Base‘𝐺)
99 proot1ex.o . . . . . 6 𝑂 = (od‘𝐺)
100 cnfld1 19590 . . . . . . . 8 1 = (1r‘ℂfld)
10175, 81, 100unitgrpid 18492 . . . . . . 7 (ℂfld ∈ Ring → 1 = (0g𝐺))
10271, 101ax-mp 5 . . . . . 6 1 = (0g𝐺)
10398, 99, 82, 102odeq 17792 . . . . 5 ((𝐺 ∈ Grp ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10496, 14, 97, 103syl3anc 1318 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10594, 104mpbird 246 . . 3 (𝑁 ∈ ℕ → 𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))))
106105eqcomd 2616 . 2 (𝑁 ∈ ℕ → (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)
10798, 99odf 17779 . . . 4 𝑂:(ℂ ∖ {0})⟶ℕ0
108 ffn 5958 . . . 4 (𝑂:(ℂ ∖ {0})⟶ℕ0𝑂 Fn (ℂ ∖ {0}))
109107, 108ax-mp 5 . . 3 𝑂 Fn (ℂ ∖ {0})
110 fniniseg 6246 . . 3 (𝑂 Fn (ℂ ∖ {0}) → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
111109, 110mp1i 13 . 2 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
11214, 106, 111mpbir2and 959 1 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  {csn 4125   class class class wbr 4583  ccnv 5037  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816  ici 9817   · cmul 9820  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  +crp 11708  cexp 12722  expce 14631  πcpi 14636  cdvds 14821  s cress 15696  0gc0g 15923  SubMndcsubmnd 17157  Grpcgrp 17245  .gcmg 17363  odcod 17767  mulGrpcmgp 18312  Ringcrg 18370  fldccnfld 19567  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-cntz 17573  df-od 17771  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator