MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflddiv Structured version   Visualization version   GIF version

Theorem cnflddiv 19595
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
cnflddiv / = (/r‘ℂfld)

Proof of Theorem cnflddiv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 19587 . . . . . . . 8 fld ∈ Ring
2 cnfldbas 19571 . . . . . . . . 9 ℂ = (Base‘ℂfld)
3 cnfld0 19589 . . . . . . . . . 10 0 = (0g‘ℂfld)
4 cndrng 19594 . . . . . . . . . 10 fld ∈ DivRing
52, 3, 4drngui 18576 . . . . . . . . 9 (ℂ ∖ {0}) = (Unit‘ℂfld)
6 eqid 2610 . . . . . . . . 9 (/r‘ℂfld) = (/r‘ℂfld)
7 cnfldmul 19573 . . . . . . . . 9 · = (.r‘ℂfld)
82, 5, 6, 7dvrcan1 18514 . . . . . . . 8 ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥)
91, 8mp3an1 1403 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥(/r‘ℂfld)𝑦) · 𝑦) = 𝑥)
109oveq1d 6564 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥 / 𝑦))
112, 5, 6dvrcl 18509 . . . . . . . 8 ((ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ)
121, 11mp3an1 1403 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) ∈ ℂ)
13 simpr 476 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
14 eldifsn 4260 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
1513, 14sylib 207 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
1615simpld 474 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
1715simprd 478 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
1812, 16, 17divcan4d 10686 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (((𝑥(/r‘ℂfld)𝑦) · 𝑦) / 𝑦) = (𝑥(/r‘ℂfld)𝑦))
1910, 18eqtr3d 2646 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑥(/r‘ℂfld)𝑦))
20 simpl 472 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
21 divval 10566 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2220, 16, 17, 21syl3anc 1318 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2319, 22eqtr3d 2646 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
24 eqid 2610 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
252, 7, 5, 24, 6dvrval 18508 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥(/r‘ℂfld)𝑦) = (𝑥 · ((invr‘ℂfld)‘𝑦)))
2623, 25eqtr3d 2646 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · ((invr‘ℂfld)‘𝑦)))
2726mpt2eq3ia 6618 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · ((invr‘ℂfld)‘𝑦)))
28 df-div 10564 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
292, 7, 5, 24, 6dvrfval 18507 . 2 (/r‘ℂfld) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · ((invr‘ℂfld)‘𝑦)))
3027, 28, 293eqtr4i 2642 1 / = (/r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  {csn 4125  cfv 5804  crio 6510  (class class class)co 6549  cmpt2 6551  cc 9813  0cc0 9815   · cmul 9820   / cdiv 10563  Ringcrg 18370  invrcinvr 18494  /rcdvr 18505  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-cnfld 19568
This theorem is referenced by:  cnfldinv  19596  cnsubdrglem  19616  qsssubdrg  19624  redvr  19782  cvsdiv  22740  qrngdiv  25113
  Copyright terms: Public domain W3C validator