Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmsubglem Structured version   Visualization version   GIF version

Theorem cnmsubglem 19628
 Description: Lemma for rpmsubg 19629 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cnmgpabl.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
cnmsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnmsubglem.2 (𝑥𝐴𝑥 ≠ 0)
cnmsubglem.3 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
cnmsubglem.4 1 ∈ 𝐴
cnmsubglem.5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
Assertion
Ref Expression
cnmsubglem 𝐴 ∈ (SubGrp‘𝑀)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑀,𝑦

Proof of Theorem cnmsubglem
StepHypRef Expression
1 cnmsubglem.1 . . . 4 (𝑥𝐴𝑥 ∈ ℂ)
2 cnmsubglem.2 . . . 4 (𝑥𝐴𝑥 ≠ 0)
3 eldifsn 4260 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
41, 2, 3sylanbrc 695 . . 3 (𝑥𝐴𝑥 ∈ (ℂ ∖ {0}))
54ssriv 3572 . 2 𝐴 ⊆ (ℂ ∖ {0})
6 cnmsubglem.4 . . 3 1 ∈ 𝐴
76ne0ii 3882 . 2 𝐴 ≠ ∅
8 cnmsubglem.3 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
98ralrimiva 2949 . . . 4 (𝑥𝐴 → ∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
10 cnfldinv 19596 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
111, 2, 10syl2anc 691 . . . . 5 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) = (1 / 𝑥))
12 cnmsubglem.5 . . . . 5 (𝑥𝐴 → (1 / 𝑥) ∈ 𝐴)
1311, 12eqeltrd 2688 . . . 4 (𝑥𝐴 → ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
149, 13jca 553 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))
1514rgen 2906 . 2 𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)
16 cnmgpabl.m . . . 4 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1716cnmgpabl 19626 . . 3 𝑀 ∈ Abel
18 ablgrp 18021 . . 3 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
19 difss 3699 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
20 eqid 2610 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 19571 . . . . . . 7 ℂ = (Base‘ℂfld)
2220, 21mgpbas 18318 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
2316, 22ressbas2 15758 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑀))
2419, 23ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑀)
25 cnex 9896 . . . . 5 ℂ ∈ V
26 difexg 4735 . . . . 5 (ℂ ∈ V → (ℂ ∖ {0}) ∈ V)
27 cnfldmul 19573 . . . . . . 7 · = (.r‘ℂfld)
2820, 27mgpplusg 18316 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
2916, 28ressplusg 15818 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑀))
3025, 26, 29mp2b 10 . . . 4 · = (+g𝑀)
31 cnfld0 19589 . . . . . 6 0 = (0g‘ℂfld)
32 cndrng 19594 . . . . . 6 fld ∈ DivRing
3321, 31, 32drngui 18576 . . . . 5 (ℂ ∖ {0}) = (Unit‘ℂfld)
34 eqid 2610 . . . . 5 (invr‘ℂfld) = (invr‘ℂfld)
3533, 16, 34invrfval 18496 . . . 4 (invr‘ℂfld) = (invg𝑀)
3624, 30, 35issubg2 17432 . . 3 (𝑀 ∈ Grp → (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴))))
3717, 18, 36mp2b 10 . 2 (𝐴 ∈ (SubGrp‘𝑀) ↔ (𝐴 ⊆ (ℂ ∖ {0}) ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (∀𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 ∧ ((invr‘ℂfld)‘𝑥) ∈ 𝐴)))
385, 7, 15, 37mpbir3an 1237 1 𝐴 ∈ (SubGrp‘𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  {csn 4125  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  Basecbs 15695   ↾s cress 15696  +gcplusg 15768  Grpcgrp 17245  SubGrpcsubg 17411  Abelcabl 18017  mulGrpcmgp 18312  invrcinvr 18494  ℂfldccnfld 19567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-cnfld 19568 This theorem is referenced by:  rpmsubg  19629  cnmsgnsubg  19742
 Copyright terms: Public domain W3C validator