Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem2 Structured version   Visualization version   GIF version

Theorem sxbrsigalem2 29675
Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽   𝑒,𝑓,𝑛,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑣,𝑢,𝑒,𝑓)   𝐼(𝑒,𝑓,𝑛)   𝐽(𝑣,𝑢,𝑒,𝑓,𝑛)

Proof of Theorem sxbrsigalem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . 4 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 29673 . . 3 ran 𝑅 = (ℝ × ℝ)
5 sxbrsigalem0 29660 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
64, 5eqtr4i 2635 . 2 ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
7 vex 3176 . . . . . 6 𝑢 ∈ V
8 vex 3176 . . . . . 6 𝑣 ∈ V
97, 8xpex 6860 . . . . 5 (𝑢 × 𝑣) ∈ V
103, 9elrnmpt2 6671 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
11 simpr 476 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
121, 2dya2icobrsiga 29665 . . . . . . . . . . . . 13 ran 𝐼 ⊆ 𝔅
13 brsigasspwrn 29575 . . . . . . . . . . . . 13 𝔅 ⊆ 𝒫 ℝ
1412, 13sstri 3577 . . . . . . . . . . . 12 ran 𝐼 ⊆ 𝒫 ℝ
1514sseli 3564 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
1615elpwid 4118 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
1714sseli 3564 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
1817elpwid 4118 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
19 xpinpreima2 29281 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
2016, 18, 19syl2an 493 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) = (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)))
21 reex 9906 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
2221mptex 6390 . . . . . . . . . . . . . . . 16 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2322rnex 6992 . . . . . . . . . . . . . . 15 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∈ V
2421mptex 6390 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2524rnex 6992 . . . . . . . . . . . . . . 15 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ∈ V
2623, 25unex 6854 . . . . . . . . . . . . . 14 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V
2726a1i 11 . . . . . . . . . . . . 13 (⊤ → (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V)
2827sgsiga 29532 . . . . . . . . . . . 12 (⊤ → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
2928trud 1484 . . . . . . . . . . 11 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra
3029a1i 11 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
31 1stpreima 28867 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
3216, 31syl 17 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) = (𝑢 × ℝ))
33 ovex 6577 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
342, 33elrnmpt2 6671 . . . . . . . . . . . . 13 (𝑢 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
35 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3635xpeq1d 5062 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
37 difxp1 5478 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
38 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
3938zred 11358 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
40 2rp 11713 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ+
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
42 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
4341, 42rpexpcld 12894 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
4439, 43rerpdivcld 11779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
4544rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
46 1red 9934 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
4739, 46readdcld 9948 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
4847, 43rerpdivcld 11779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
4948rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
50 pnfxr 9971 . . . . . . . . . . . . . . . . . . . . . 22 +∞ ∈ ℝ*
5150a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → +∞ ∈ ℝ*)
5239lep1d 10834 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ≤ (𝑥 + 1))
5339, 47, 43, 52lediv1dd 11806 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)))
54 pnfge 11840 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)
56 difico 28935 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝑥 / (2↑𝑛)) ≤ ((𝑥 + 1) / (2↑𝑛)) ∧ ((𝑥 + 1) / (2↑𝑛)) ≤ +∞)) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5745, 49, 51, 53, 55, 56syl32anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5857xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞)) × ℝ) = (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ))
5937, 58syl5reqr 2659 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) = ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
6029a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra)
61 ssun1 3738 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
62 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)
63 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒 = (𝑥 / (2↑𝑛)) → (𝑒[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
6463xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = (𝑥 / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ))
6564eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑥 / (2↑𝑛)) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ) ↔ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)))
6665rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = (((𝑥 / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
6744, 62, 66sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
68 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
69 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒[,)+∞) ∈ V
7069, 21xpex 6860 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑒[,)+∞) × ℝ) ∈ V
7168, 70elrnmpti 5297 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
7267, 71sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
7361, 72sseldi 3566 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
74 elsigagen 29537 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
7526, 73, 74sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
76 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)
77 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (𝑒[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
7877xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → ((𝑒[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ))
7978eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = ((𝑥 + 1) / (2↑𝑛)) → (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ) ↔ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)))
8079rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8148, 76, 80sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8268, 70elrnmpti 5297 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ↔ ∃𝑒 ∈ ℝ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) = ((𝑒[,)+∞) × ℝ))
8381, 82sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)))
8461, 83sseldi 3566 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
85 elsigagen 29537 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8626, 84, 85sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
87 difelsiga 29523 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8860, 75, 86, 87syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((((𝑥 / (2↑𝑛))[,)+∞) × ℝ) ∖ ((((𝑥 + 1) / (2↑𝑛))[,)+∞) × ℝ)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
8959, 88eqeltrd 2688 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9089adantr 480 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9136, 90eqeltrd 2688 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9291ex 449 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
9392rexlimivv 3018 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑢 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9434, 93sylbi 206 . . . . . . . . . . . 12 (𝑢 ∈ ran 𝐼 → (𝑢 × ℝ) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9532, 94eqeltrd 2688 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐼 → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
9695adantr 480 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
97 2ndpreima 28868 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
9818, 97syl 17 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) = (ℝ × 𝑣))
992, 33elrnmpt2 6671 . . . . . . . . . . . . 13 (𝑣 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
100 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
101100xpeq2d 5063 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
102 difxp2 5479 . . . . . . . . . . . . . . . . . . 19 (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
10357xpeq2d 5063 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 / (2↑𝑛))[,)+∞) ∖ (((𝑥 + 1) / (2↑𝑛))[,)+∞))) = (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))))
104102, 103syl5reqr 2659 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) = ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
105 ssun2 3739 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
106 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))
107 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑥 / (2↑𝑛)) → (𝑓[,)+∞) = ((𝑥 / (2↑𝑛))[,)+∞))
108107xpeq2d 5063 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑥 / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)))
109108eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑥 / (2↑𝑛)) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)) ↔ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))))
110109rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × ((𝑥 / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
11144, 106, 110sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
112 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
113 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓[,)+∞) ∈ V
11421, 113xpex 6860 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (𝑓[,)+∞)) ∈ V
115112, 114elrnmpti 5297 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
116111, 115sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
117105, 116sseldi 3566 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
118 elsigagen 29537 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
11926, 117, 118sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
120 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))
121 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (𝑓[,)+∞) = (((𝑥 + 1) / (2↑𝑛))[,)+∞))
122121xpeq2d 5063 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → (ℝ × (𝑓[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)))
123122eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑥 + 1) / (2↑𝑛)) → ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)) ↔ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))))
124123rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥 + 1) / (2↑𝑛)) ∈ ℝ ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
12548, 120, 124sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
126112, 114elrnmpti 5297 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ↔ ∃𝑓 ∈ ℝ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) = (ℝ × (𝑓[,)+∞)))
127125, 126sylibr 223 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))
128105, 127sseldi 3566 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
129 elsigagen 29537 . . . . . . . . . . . . . . . . . . . 20 (((ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13026, 128, 129sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
131 difelsiga 29523 . . . . . . . . . . . . . . . . . . 19 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ (ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13260, 119, 130, 131syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((ℝ × ((𝑥 / (2↑𝑛))[,)+∞)) ∖ (ℝ × (((𝑥 + 1) / (2↑𝑛))[,)+∞))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
133104, 132eqeltrd 2688 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
134133adantr 480 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
135101, 134eqeltrd 2688 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
136135ex 449 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
137136rexlimivv 3018 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑣 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13899, 137sylbi 206 . . . . . . . . . . . 12 (𝑣 ∈ ran 𝐼 → (ℝ × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
13998, 138eqeltrd 2688 . . . . . . . . . . 11 (𝑣 ∈ ran 𝐼 → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
140139adantl 481 . . . . . . . . . 10 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
141 inelsiga 29525 . . . . . . . . . 10 (((sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑢) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14230, 96, 140, 141syl3anc 1318 . . . . . . . . 9 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (((1st ↾ (ℝ × ℝ)) “ 𝑢) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑣)) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14320, 142eqeltrd 2688 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
144143adantr 480 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14511, 144eqeltrd 2688 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
146145ex 449 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))))
147146rexlimivv 3018 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
14810, 147sylbi 206 . . 3 (𝑑 ∈ ran 𝑅𝑑 ∈ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
149148ssriv 3572 . 2 ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
150 sigagenss2 29540 . 2 (( ran 𝑅 = (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∧ ran 𝑅 ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))))
1516, 149, 26, 150mp3an 1416 1 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wtru 1476  wcel 1977  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  cima 5041  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  cr 9814  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952  cle 9954   / cdiv 10563  2c2 10947  cz 11254  +crp 11708  (,)cioo 12046  [,)cico 12048  cexp 12722  topGenctg 15921  sigAlgebracsiga 29497  sigaGencsigagen 29528  𝔅cbrsiga 29571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-refld 19770  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-cfil 22861  df-cmet 22863  df-cms 22940  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303  df-siga 29498  df-sigagen 29529  df-brsiga 29572
This theorem is referenced by:  sxbrsigalem4  29676
  Copyright terms: Public domain W3C validator