Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpti Structured version   Visualization version   GIF version

Theorem elrnmpti 5297
 Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpti.2 𝐵 ∈ V
Assertion
Ref Expression
elrnmpti (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem elrnmpti
StepHypRef Expression
1 elrnmpti.2 . . 3 𝐵 ∈ V
21rgenw 2908 . 2 𝑥𝐴 𝐵 ∈ V
3 rnmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43elrnmptg 5296 . 2 (∀𝑥𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
52, 4ax-mp 5 1 (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ↦ cmpt 4643  ran crn 5039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-cnv 5046  df-dm 5048  df-rn 5049 This theorem is referenced by:  fliftel  6459  oarec  7529  unfilem1  8109  pwfilem  8143  elrest  15911  psgneldm2  17747  psgnfitr  17760  iscyggen2  18106  iscyg3  18111  cycsubgcyg  18125  eldprd  18226  leordtval2  20826  iocpnfordt  20829  icomnfordt  20830  lecldbas  20833  tsmsxplem1  21766  minveclem2  23005  lhop2  23582  taylthlem2  23932  fsumvma  24738  dchrptlem2  24790  2sqlem1  24942  dchrisum0fno1  25000  minvecolem2  27115  gsumesum  29448  esumlub  29449  esumcst  29452  esumpcvgval  29467  esumgect  29479  esum2d  29482  sigapildsys  29552  sxbrsigalem2  29675  omssubaddlem  29688  omssubadd  29689  eulerpartgbij  29761  bnj1366  30154  msubco  30682  msubvrs  30711  fin2so  32566  poimirlem17  32596  poimirlem20  32599  cntotbnd  32765  islsat  33296
 Copyright terms: Public domain W3C validator