Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenss2 | Structured version Visualization version GIF version |
Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017.) |
Ref | Expression |
---|---|
sigagenss2 | ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga 29531 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) | |
2 | 1 | 3ad2ant3 1077 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐵)) |
3 | simp1 1054 | . . . 4 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → ∪ 𝐴 = ∪ 𝐵) | |
4 | 3 | fveq2d 6107 | . . 3 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigAlgebra‘∪ 𝐴) = (sigAlgebra‘∪ 𝐵)) |
5 | 2, 4 | eleqtrrd 2691 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴)) |
6 | simp2 1055 | . 2 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐴 ⊆ (sigaGen‘𝐵)) | |
7 | sigagenss 29539 | . 2 ⊢ (((sigaGen‘𝐵) ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ (sigaGen‘𝐵)) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) | |
8 | 5, 6, 7 | syl2anc 691 | 1 ⊢ ((∪ 𝐴 = ∪ 𝐵 ∧ 𝐴 ⊆ (sigaGen‘𝐵) ∧ 𝐵 ∈ 𝑉) → (sigaGen‘𝐴) ⊆ (sigaGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ∪ cuni 4372 ‘cfv 5804 sigAlgebracsiga 29497 sigaGencsigagen 29528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-siga 29498 df-sigagen 29529 |
This theorem is referenced by: sxbrsigalem3 29661 sxbrsigalem1 29674 sxbrsigalem2 29675 sxbrsigalem4 29676 sxbrsigalem5 29677 sxbrsiga 29679 |
Copyright terms: Public domain | W3C validator |