Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp2 Structured version   Visualization version   GIF version

Theorem difxp2 5479
 Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp2 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))

Proof of Theorem difxp2
StepHypRef Expression
1 difxp 5477 . 2 ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) = (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶)))
2 difid 3902 . . . . 5 (𝐴𝐴) = ∅
32xpeq1i 5059 . . . 4 ((𝐴𝐴) × 𝐵) = (∅ × 𝐵)
4 0xp 5122 . . . 4 (∅ × 𝐵) = ∅
53, 4eqtri 2632 . . 3 ((𝐴𝐴) × 𝐵) = ∅
65uneq1i 3725 . 2 (((𝐴𝐴) × 𝐵) ∪ (𝐴 × (𝐵𝐶))) = (∅ ∪ (𝐴 × (𝐵𝐶)))
7 uncom 3719 . . 3 (∅ ∪ (𝐴 × (𝐵𝐶))) = ((𝐴 × (𝐵𝐶)) ∪ ∅)
8 un0 3919 . . 3 ((𝐴 × (𝐵𝐶)) ∪ ∅) = (𝐴 × (𝐵𝐶))
97, 8eqtri 2632 . 2 (∅ ∪ (𝐴 × (𝐵𝐶))) = (𝐴 × (𝐵𝐶))
101, 6, 93eqtrri 2637 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∖ cdif 3537   ∪ cun 3538  ∅c0 3874   × cxp 5036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-rel 5045 This theorem is referenced by:  imadifxp  28796  sxbrsigalem2  29675
 Copyright terms: Public domain W3C validator