Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Visualization version   GIF version

Theorem itgmulc2nc 32648
Description: Choice-free analogue of itgmulc2 23406. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgmulc2nc (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
21recld 13782 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
32recnd 9947 . . . . . . 7 (𝜑 → (ℜ‘𝐶) ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 23340 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 23210 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
109recld 13782 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1110recnd 9947 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
124, 11mulcld 9939 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
139iblcn 23371 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
145, 13mpbid 221 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1514simpld 474 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
16 itgmulc2nc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
17 ovex 6577 . . . . . . . . . 10 (𝐶 · 𝐵) ∈ V
1817a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ V)
1916, 18mbfdm2 23211 . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
20 fconstmpt 5085 . . . . . . . . 9 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
2120a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
22 eqidd 2611 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
2319, 4, 10, 21, 22offval2 6812 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
24 iblmbf 23340 . . . . . . . . 9 ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2515, 24syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
26 eqid 2610 . . . . . . . . 9 (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵))
2711, 26fmptd 6292 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
2825, 2, 27mbfmulc2re 23221 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
2923, 28eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
303, 10, 15, 29iblmulc2nc 32645 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
3112, 30itgcl 23356 . . . 4 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
32 ax-icn 9874 . . . . 5 i ∈ ℂ
339imcld 13783 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3433recnd 9947 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
354, 34mulcld 9939 . . . . . 6 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3614simprd 478 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
37 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
3819, 4, 33, 21, 37offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
39 iblmbf 23340 . . . . . . . . . 10 ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
4036, 39syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
41 eqid 2610 . . . . . . . . . 10 (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵))
4234, 41fmptd 6292 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4340, 2, 42mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4438, 43eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
453, 33, 36, 44iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
4635, 45itgcl 23356 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
47 mulcl 9899 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
4832, 46, 47sylancr 694 . . . 4 (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
491imcld 13783 . . . . . . . . 9 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
5049recnd 9947 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℂ)
5150negcld 10258 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℂ)
5251adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℂ)
5352, 34mulcld 9939 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
54 fconstmpt 5085 . . . . . . . . 9 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
5554a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
5619, 52, 33, 55, 37offval2 6812 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
5749renegcld 10336 . . . . . . . 8 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
5840, 57, 42mbfmulc2re 23221 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5956, 58eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
6051, 33, 36, 59iblmulc2nc 32645 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
6153, 60itgcl 23356 . . . 4 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
6250adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6362, 11mulcld 9939 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
64 fconstmpt 5085 . . . . . . . . . 10 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
6564a1i 11 . . . . . . . . 9 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
6619, 62, 10, 65, 22offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
6725, 49, 27mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6866, 67eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
6950, 10, 15, 68iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
7063, 69itgcl 23356 . . . . 5 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
71 mulcl 9899 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7232, 70, 71sylancr 694 . . . 4 (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7331, 48, 61, 72add4d 10143 . . 3 (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
7432a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
7574, 50mulcld 9939 . . . . 5 (𝜑 → (i · (ℑ‘𝐶)) ∈ ℂ)
768, 5itgcl 23356 . . . . 5 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
773, 75, 76adddird 9944 . . . 4 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)))
788, 5itgcnval 23372 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
7978oveq2d 6565 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
8010, 15itgcl 23356 . . . . . . 7 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
8133, 36itgcl 23356 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
82 mulcl 9899 . . . . . . . 8 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
8332, 81, 82sylancr 694 . . . . . . 7 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
843, 80, 83adddid 9943 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
853, 10, 15, 29, 2, 10itgmulc2nclem2 32647 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥)
863, 74, 81mul12d 10124 . . . . . . . 8 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
873, 33, 36, 44, 2, 33itgmulc2nclem2 32647 . . . . . . . . 9 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)
8887oveq2d 6565 . . . . . . . 8 (𝜑 → (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8986, 88eqtrd 2644 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
9085, 89oveq12d 6567 . . . . . 6 (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
9179, 84, 903eqtrd 2648 . . . . 5 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
9278oveq2d 6565 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9375, 80, 83adddid 9943 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9474, 50, 80mulassd 9942 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)))
9550, 10, 15, 68, 49, 10itgmulc2nclem2 32647 . . . . . . . . . 10 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)
9695oveq2d 6565 . . . . . . . . 9 (𝜑 → (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9794, 96eqtrd 2644 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9874, 50, 74, 81mul4d 10127 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
99 ixi 10535 . . . . . . . . . . 11 (i · i) = -1
10099oveq1i 6559 . . . . . . . . . 10 ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10150, 81mulcld 9939 . . . . . . . . . . 11 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
102101mulm1d 10361 . . . . . . . . . 10 (𝜑 → (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
103100, 102syl5eq 2656 . . . . . . . . 9 (𝜑 → ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10450, 81mulneg1d 10362 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10551, 33, 36, 59, 57, 33itgmulc2nclem2 32647 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
106104, 105eqtr3d 2646 . . . . . . . . 9 (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10798, 103, 1063eqtrd 2648 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10897, 107oveq12d 6567 . . . . . . 7 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
10972, 61addcomd 10117 . . . . . . 7 (𝜑 → ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
110108, 109eqtrd 2644 . . . . . 6 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
11192, 93, 1103eqtrd 2648 . . . . 5 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
11291, 111oveq12d 6567 . . . 4 (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11377, 112eqtrd 2644 . . 3 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11462, 34mulcld 9939 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
11519, 62, 33, 65, 37offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))))
11640, 49, 42mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
117115, 116eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
11850, 33, 36, 117iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
1191adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
120119, 9mulcld 9939 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
121 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵)))
122 ref 13700 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
123122a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
124123feqmptd 6159 . . . . . . . . 9 (𝜑 → ℜ = (𝑘 ∈ ℂ ↦ (ℜ‘𝑘)))
125 fveq2 6103 . . . . . . . . 9 (𝑘 = (𝐶 · 𝐵) → (ℜ‘𝑘) = (ℜ‘(𝐶 · 𝐵)))
126120, 121, 124, 125fmptco 6303 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
127119, 9remuld 13806 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
128127mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
129126, 128eqtrd 2644 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
130 eqid 2610 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵))
131120, 130fmptd 6292 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
132 ismbfcn 23204 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
133131, 132syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
13416, 133mpbid 221 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn))
135134simpld 474 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
136129, 135eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) ∈ MblFn)
13712, 30, 114, 118, 136itgsubnc 32642 . . . . 5 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
138127itgeq2dv 23354 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥)
139114, 118itgneg 23376 . . . . . . . 8 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
14062, 34mulneg1d 10362 . . . . . . . . 9 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
141140itgeq2dv 23354 . . . . . . . 8 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
142139, 141eqtr4d 2647 . . . . . . 7 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
143142oveq2d 6565 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
144114, 118itgcl 23356 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
14531, 144negsubd 10277 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
146143, 145eqtr3d 2646 . . . . 5 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
147137, 138, 1463eqtr4d 2654 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
148119, 9immuld 13807 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
149148itgeq2dv 23354 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥)
150 imf 13701 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
151150a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
152151feqmptd 6159 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑘 ∈ ℂ ↦ (ℑ‘𝑘)))
153 fveq2 6103 . . . . . . . . . . 11 (𝑘 = (𝐶 · 𝐵) → (ℑ‘𝑘) = (ℑ‘(𝐶 · 𝐵)))
154120, 121, 152, 153fmptco 6303 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
155148mpteq2dva 4672 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
156154, 155eqtrd 2644 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
157134simprd 478 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
158156, 157eqeltrrd 2689 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) ∈ MblFn)
15935, 45, 63, 69, 158itgaddnc 32640 . . . . . . 7 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
160149, 159eqtrd 2644 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
161160oveq2d 6565 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
16274, 46, 70adddid 9943 . . . . 5 (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
163161, 162eqtrd 2644 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
164147, 163oveq12d 6567 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
16573, 113, 1643eqtr4d 2654 . 2 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
1661replimd 13785 . . 3 (𝜑𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶))))
167166oveq1d 6564 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥))
1681, 8, 5, 16iblmulc2nc 32645 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
169120, 168itgcnval 23372 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
170165, 167, 1693eqtr4d 2654 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  dom cdm 5038  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146  cre 13685  cim 13686  volcvol 23039  MblFncmbf 23189  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243
This theorem is referenced by:  itgabsnc  32649
  Copyright terms: Public domain W3C validator