MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgneg Structured version   Visualization version   GIF version

Theorem itgneg 23376
Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgneg (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 23340 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 23210 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65recld 13782 . . . . 5 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
75iblcn 23371 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
81, 7mpbid 221 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
98simpld 474 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
106, 9itgcl 23356 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
11 ax-icn 9874 . . . . 5 i ∈ ℂ
125imcld 13783 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
138simprd 478 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
1412, 13itgcl 23356 . . . . 5 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
15 mulcl 9899 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1611, 14, 15sylancr 694 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1710, 16negdid 10284 . . 3 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)))
18 0re 9919 . . . . . . . 8 0 ∈ ℝ
19 ifcl 4080 . . . . . . . 8 (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
206, 18, 19sylancl 693 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
216iblre 23366 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
229, 21mpbid 221 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
2322simpld 474 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2420, 23itgcl 23356 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
256renegcld 10336 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) ∈ ℝ)
26 ifcl 4080 . . . . . . . 8 ((-(ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2725, 18, 26sylancl 693 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2822simprd 478 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
2927, 28itgcl 23356 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
3024, 29negsubdi2d 10287 . . . . 5 (𝜑 → -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
316, 9itgreval 23369 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
3231negeqd 10154 . . . . 5 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
335negcld 10258 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
3433recld 13782 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
354, 1iblneg 23375 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
3633iblcn 23371 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
3735, 36mpbid 221 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1))
3837simpld 474 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
3934, 38itgreval 23369 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥))
405renegd 13797 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
4140breq2d 4595 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
4241, 40ifbieq1d 4059 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
4342itgeq2dv 23354 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥)
4440negeqd 10154 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
456recnd 9947 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4645negnegd 10262 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
4744, 46eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
4847breq2d 4595 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
4948, 47ifbieq1d 4059 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
5049itgeq2dv 23354 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)
5143, 50oveq12d 6567 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5239, 51eqtrd 2644 . . . . 5 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5330, 32, 523eqtr4d 2654 . . . 4 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = ∫𝐴(ℜ‘-𝐵) d𝑥)
54 mulneg2 10346 . . . . . 6 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
5511, 14, 54sylancr 694 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
56 ifcl 4080 . . . . . . . . . . 11 (((ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5712, 18, 56sylancl 693 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5812iblre 23366 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
5913, 58mpbid 221 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
6059simpld 474 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
6157, 60itgcl 23356 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6212renegcld 10336 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) ∈ ℝ)
63 ifcl 4080 . . . . . . . . . . 11 ((-(ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6462, 18, 63sylancl 693 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6559simprd 478 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
6664, 65itgcl 23356 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6761, 66negsubdi2d 10287 . . . . . . . 8 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
685imnegd 13798 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
6968breq2d 4595 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
7069, 68ifbieq1d 4059 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
7170itgeq2dv 23354 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥)
7268negeqd 10154 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
7312recnd 9947 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
7473negnegd 10262 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
7572, 74eqtrd 2644 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
7675breq2d 4595 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
7776, 75ifbieq1d 4059 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
7877itgeq2dv 23354 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥)
7971, 78oveq12d 6567 . . . . . . . 8 (𝜑 → (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
8067, 79eqtr4d 2647 . . . . . . 7 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8112, 13itgreval 23369 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8281negeqd 10154 . . . . . . 7 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8333imcld 13783 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
8437simprd 478 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
8583, 84itgreval 23369 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8680, 82, 853eqtr4d 2654 . . . . . 6 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = ∫𝐴(ℑ‘-𝐵) d𝑥)
8786oveq2d 6565 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8855, 87eqtr3d 2646 . . . 4 (𝜑 → -(i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8953, 88oveq12d 6567 . . 3 (𝜑 → (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9017, 89eqtrd 2644 . 2 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
914, 1itgcnval 23372 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9291negeqd 10154 . 2 (𝜑 → -∫𝐴𝐵 d𝑥 = -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9333, 35itgcnval 23372 . 2 (𝜑 → ∫𝐴-𝐵 d𝑥 = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9490, 92, 933eqtr4d 2654 1 (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  -cneg 10146  cre 13685  cim 13686  MblFncmbf 23189  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243
This theorem is referenced by:  itgsub  23398  itgsubnc  32642  itgmulc2nc  32648  sqwvfourb  39122
  Copyright terms: Public domain W3C validator